Siebformel (I)

Wir hatten schon die Formel:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Gibt es solch eine Formel auch für 3 Ereignisse, also für $P(A \cup B \cup C)$?

Siebformel (I)

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$$
$$- P(B \cap C) + P(A \cap B \cap C).$$

Siebformel (I)

Siebformel (II)

Siebformel (II)

Ganz allgemein: A_1, A_2, \ldots

$$P(A_1 \cup \cdots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j)$$

$$+ \sum_{i < j < k} P(A_i \cap A_j \cap A_k) \mp \cdots +$$

$$(-1)^{n+1} P(A_1 \cap \cdots \cap A_n).$$

Hinweis: Dies ist ein klassischer Induktionsbeweis.

Ereignis-Algebra

Beispiel

Ergebnismenge für...

- **1** zufälligen Gewinn eines Unternehmens: $\Omega = \mathbb{R}$.
- 2 zufälligen Zeitpunkt, an dem die Serverlast zum ersten Mal die Schranke c übersteigt: $\Omega = [0, \infty)$.

Grundlegender Unterschied:

- $\to \Omega$ 'sehr groß' (es gibt überabzählbar viele reelle Zahlen in jedem nichtleeren Intervall).
- ightarrow Es gibt zu viele Teilmengen, so dass man nicht alle als Ereignisse zulassen kann. Ansonsten kein vernünftiger Wahrscheinlichkeitskalkül.
- \rightarrow Andere Beschreibung von Wahrscheinlichkeiten (Dichten, Verteilungsfunktionen, später...).

Wafer-Herstellung

- Modelliere Wafer durch Oberfläche Ω
- Staubpartikel landet zufällig an der Stelle $\omega \in \Omega$: CPU defekt.
- (Kleine) Teilfläche $A \subset \Omega$ nutzlos, wenn $\omega \in A$.
- Staubpartikel trifft an einer zufälligen Stelle auf den Wafer. Plausibles Modell:

$$P(A) = \frac{|A|}{|\Omega|}$$

mit |A| = Fläche von A.

Ereignisalgebra

Ereignisalgebra, σ -Algebra

Ein Mengensystem $\mathcal{A} \subset \mathsf{Pot}(\Omega)$ von Teilmengen von Ω heißt

Ereignisalgebra (σ -Algebra), wenn die folgenden Eigenschaften gelten:

- lacktriangle Die Ergebnismenge Ω und die leere Menge \emptyset gehören zu \mathcal{A} .
- 2 Mit A ist auch \overline{A} Element von A.
- **③** Sind $A_1, A_2, ...$ Mengen aus \mathcal{A} , dann ist auch $\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup ...$ ein Element von \mathcal{A} .

Die Elemente von \mathcal{A} heißen **Ereignisse**.

Motivation

Wie wahrscheinlich ist es, dass die Übertragung der Buchungsdaten aus Hongkong nicht länger als 20 [s] dauert,...

- wenn die Übertragung zufällig startet.
- 2 wenn wir wissen: Die Übertragung erfolgt vormittags.

Frage:

Wie wahrscheinlich ist A gegeben die Information B.

Beispiel: Expertensystem zur Fehleridentifikation.

Fehlerursachen A führen zu Symptomen $B: A \rightarrow B$

Zufallsbehaftete Fehlerursachen A_1, \ldots, A_K (unbeobachtet)

Symptom B (beobachtet)

Beispiel:

Ursachen A_i : Ausfall Bauteil, Kabelbruch, Überspannung, korrodierter Stecker, Überhitzung

Symptome B: Systemausfall, Displayfehler, langsame Datenübertragung, kein WLAN

Relevant: Wie wahrscheinlich ist A_i , wenn B beobachtet wurde?

Beispiel: Aktienindizes steigen oder fallen zufallsbehaftet. Sie sind beeinflusst von Zinsen.

Daten: 2000 Beobachtungen von Zins und Aktienindex

	Zins fällt (B)	Zins steigt	Summe
Aktienindex fällt (A)	250	950	1200
Aktienindex steigt	750	50	800
Summe	1000	1000	2000

Ablesebeispiel: 250 mal sind Aktienindex und Zins gefallen.

In $\frac{1200}{2000} = 60\%$ der Fälle ist der Aktienindex gesunken.

Relevant: Vorinformation Zins fällt/steigt bekannt.

Wie oft ist der Aktienindex gesunken, wenn der Zins steigt?

Bedingte Wahrscheinlichkeit

Es seien $A, B \subset \Omega$ Ereignisse mit P(B) > 0. Dann heißt

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

bedingte Wahrscheinlichkeit von A gegeben B. Liegt speziell ein Laplace-Raum vor, dann ist P(A|B) der Anteil der für das Ereignis $A \cap B$ günstigen Fälle, bezogen auf die möglichen Fälle, welche die Menge B bilden:

$$P(A|B) = \frac{|A \cap B|}{|\Omega|} \frac{|\Omega|}{|B|} = \frac{|A \cap B|}{|B|}.$$

Beispiel: Aktienindizes steigen oder fallen zufallsbehaftet. Sie sind beeinflusst von Zinsen.

Daten: 2000 Beobachtungen von Zins und Aktienindex

	Zins fällt	Zins steigt (B)	Summe
Aktienindex fällt (A)	250	950	1200
Aktienindex steigt	750	50	800
Summe	1000	1000	2000

Wahrscheinlichkeit, dass A und B gemeinsam eintreten:

$$P(A \cap B) =$$

Wahrscheinlichkeit, dass B eintritt:

$$P(B) =$$

Wahrscheinlichkeit von A gegeben B (ist eingetreten):

$$P(A|B) = \frac{P(A \cap B)}{P(B)} =$$

Rechenregel:

A, B seien Ereignisse mit P(B) > 0. Dann gilt:

$$P(A \cap B) = P(A|B)P(B)$$

Drei Ereignisse A, B, C. Gesucht: Wkeit von C gegeben A und B. Bedinge auf das Ereignis $A \cap B$ (sofern $P(A \cap B) > 0$):

$$P(C|A\cap B) = \frac{P(A\cap B\cap C)}{P(A\cap B)}$$

Umstellen:

$$P(A \cap B \cap C) = P(C|A \cap B)P(A \cap B)$$

Einsetzen von $P(A \cap B) = P(B|A)P(A)$ (sofern P(A) > 0):

$$P(A \cap B \cap C) = P(C|A \cap B)P(B|A)P(A)$$

Beispiel

Beispiel

Ereignisse:

A = "Server nicht überlastet",

B = "Server antwortet spätestens nach 5 [s]",

C = "Download dauert nicht länger als 20 [s]".

Gesucht: $P(A \cap B \cap C)$.

Gegeben:

- Server nicht überlastet mit Wkeit 0.1.
- Wenn Server nicht überlastet, dann Antwort nach spätestens 5 [s] mit Wkeit 0.95.
- 3 In diesem Fall dauert der Download in 8 von 10 Fällen nicht länger als 20 [s].

Lösung: $P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B) = 0.1 \cdot 0.95 \cdot 0.8 = 0.076$

Rechenregel

Regel

Sind $A, B, C \subset \Omega$ Ereignisse mit $P(A \cap B \cap C) > 0$, dann ist

$$P(A \cap B \cap C) = P(C|A \cap B)P(B|A)P(A).$$

Sind allgemeiner A_1, \ldots, A_n Ereignisse mit $P(A_1 \cap \cdots \cap A_n) > 0$, dann gilt:

$$P(A_1 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_n|A_1 \cap \cdots \cap A_{n-1}).$$

Satz von der totalen Wahrscheinlichkeit

Motivation

Ein Spam-Filter verschiebt E-Mails in den junk-Ordner, wenn gewisse Worte in der E-Mail vorhanden sind, z.B. win.

Durch Analysieren von alten E-Mails kann man die bedingten Wahrscheinlichkeiten der Form

$$P(,E-Mail\ enthält\ Uni'|,Email\ ist\ Spam'')$$

etc. gut schätzen.

Fragen:

- Wie wahrscheinlich ist es, dass eine E-Mail Spam ist?
- Wie groß ist die Wahrscheinlichkeit, dass eine E-Mail tatsächlich Spam ist, wenn das Wort win vorkommt?

Spam-Filter

Systematisch: Ereignisse definieren:

$$A =$$
 "E-Mail ist Spam", $B_1 =$ "E-Mail enthält das Wort Uni ", $B_2 =$ "E-Mail enthält das Wort win ".

Bekannt seien: P(A), $P(B_1|A)$, $P(B_1|\overline{A})$, $P(B_2|A)$ und $P(B_2|\overline{A})$.

Mann man hieraus

$$P(B_i), \qquad i=1,2$$

berechnen?

Kann man hieraus

$$P(A|B_i)$$

berechnen?

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit

Es sei A_1, \ldots, A_K eine disjunkte Zerlegung von Ω :

$$\Omega = A_1 \cup \cdots \cup A_K, \quad A_i \cap A_j = \emptyset, \ i \neq j.$$

Dann gilt:

$$P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \cdots + P(B|A_K)P(A_K).$$

In Summenschreibweise:

$$P(B) = \sum_{i=1}^{K} P(B|A_i)P(A_i).$$

Diese Formel gilt auch sinngemäß für $K = \infty$.

Satz von Bayes

Satz von Bayes

Satz von Bayes

 A_1, \ldots, A_K sei eine disjunkte Zerlegung von Ω mit $P(A_i) > 0$ für alle $i = 1, \ldots, K$. Dann gilt für jedes Ereignis B mit P(B) > 0

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{k=1}^{K} P(B|A_k)P(A_k)}.$$

Diese Formel gilt sinngemäß auch für den Fall $K = \infty$.