Ausgabe: 25. April 2023 _____ Kleingruppenübungen: vom 02.05 bis zum 05.05

Einführung in die angewandte Stochastik

Kleingruppenübung 2.5

Bitte beachten Sie, dass die Kleingruppen am Dienstag, den 02. Mai, von 12:30 - 14:00 Uhr, aufgrund der Fachschaftsvollversammlung ausfallen.

Aufgabe 8

Vier unverfälschte Würfel mit den Ziffern $1, \dots, 6$ werden gleichzeitig geworfen. Dabei werden folgende Ereignisse betrachtet:

 $A \ensuremath{\widehat{=}}$ "Es fallen genau zwei Einsen"

B = "Die Augensumme beträgt 6."

 $C \cong$ "Es fallen genau zwei Sechsen."

D = "Die Augensumme beträgt 22."

- (a) Geben Sie eine geeignete Ergebnismenge Ω sowie ein geeignetes Wahrscheinlichkeitsmaß P für diese Situation an, und beschreiben Sie formal die Ereignisse A und B als Teilmengen von Ω .
- (b) Bestimmen Sie die Wahrscheinlichkeiten der Ereignisse

$$A$$
, B , $A \cap C$, $A \cap D$, $C \cap D$, $B \cup C$.

(c) Sind die Ereignisse A und C stochastisch unabhängig? Begründen Sie Ihre Antwort.

Aufgabe 9

Gegeben seien ein Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) und drei Ereignisse $A, B, C \in \mathcal{F}$ mit $P(B \cap C) > 0$ und P(B) < 1. Betrachten Sie hierzu die folgenden Aussagen:

- (1) Es gilt $P(A | B^c) + P(A | B) = 1$.
- (2) Es gilt $P(A^c | B) + P(A | B) = 1$.
- (3) Es gilt $P(A \cap B \mid C) = P(A \mid B \cap C) P(B \mid C)$.
- (4) Falls P(C) = 1 gilt, folgt $P(A \cap C) = P(A)$.
- (5) Aus P(C) = 1 folgt $C = \Omega$.

Weisen Sie jeweils die Gültigkeit der betreffenden Aussage nach, oder widerlegen Sie die Aussage durch Angabe eines geeigneten Gegenbeispiels.

Aufgabe 10

Sei $K = \{1, ..., k\}$ die Menge der natürlichen Zahlen bis k, und $\Omega = K \times K = \{(i, j) : 1 \le i, j \le k\}$. Auf der Menge $\mathcal{A} = Pot(\Omega)$ sei P die diskrete Gleichverteilung auf Ω . Es handelt sich also um einen Laplace-Raum.

- (a) Geben Sie ein reales Beispiel, dass durch obiges Modell beschrieben werden kann.
- (b) Bestimmen sie P(A) für $A = \{(1, j) : j \in K\}$ und P(B) für $B = \{(j, 1) : j \in K\}$. Sind die Ereignisse A und B stochastisch unabhängig?
- (c) Betrachten Sie die Menge $C=\{(i,j)\in\Omega:i\leq 2\}.$ Sind A und C stochastisch unabhängig? Für welche Werte k gilt das?

Hinweis: Veranschaulichen Sie sich das Modell durch eine Skizze. Wie lassen sich die Mengen A, B, C darstellen?