
Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 10: Malware and Binary Exploitation

● So far, we mainly looked at

► Secure cryptographic building

blocks

► Design of security protocols

► Users / Administrator when it

comes to password selection

● Now we look at

► Implementation vulnerabilities

► Social engineering

Overall Lecture Context

2IT-Security - Chapter 10 Malwar and Binary Exploitation

Cryptographic primitives

Protocols and policies

Implementations

Building
blocks

Specifications

Systems

User / AdministratorsHuman

Overview

3IT-Security - Chapter 10 Malwar and Binary Exploitation

Malware Types by Spreading

► Viruses, Worms, Trojans

Initial Infection

► Software Vulnerabilities

► Misconfigured access controls

► Vulnerable Authentication

§ Weak passwords

§ Protocol weaknesses

► Social engineering

Botnets

► C&C Infrastructures

► Taking down Botnets

Typical Payloads

► DDoS Engines

► SPAM Engines

► Phishing Engines

► Information Stealing

► Miners

Malware = Malicious Software

► According to NIST SP 800-83:

“A program that is inserted into a system, usually covertly, with the intent of

compromising the confidentiality, integrity or availability of the victim’s data,

applications, or operating system or otherwise annoying or disrupting the

victim”

Definition

4IT-Security - Chapter 10 Malwar and Binary Exploitation

Owner of the system and victim do not necessarily coincide

● Experimenting how to write malware

● Testing own programming skills

● Get famous

● Vandalism

● Fighting authorities

● Direct Financial gain

● Corporate Espionage

● Combatting crime and terrorism

● Cyberwar

Motivation to Write Malware

5IT-Security - Chapter 10 Malwar and Binary Exploitation

● Attacker writes a small shell script on a UNIX system:

cp /bin/sh /tmp/.xyz

chmod u+s,o+x /tmp/.xyz

rm ./ls

ls $*

● Attacker saves this script in a file called “ls” and tricks a victim user into executing it

● This leads to a copy of the shell in a hidden file .xzy

● Shell executable by anyone with the userid set to who-ever-executed-the-script

► If who-ever-executed-the-script acted as root, shell will be a root shell executable by anyone

● To the victim user, the result will look the same as result of real ls

► Script removes itself

Simple Example for Malicious Code

6IT-Security - Chapter 10 Malwar and Binary Exploitation

Trojan Horse

► Program with an

§ overt purpose known to the user

§ covert purpose unknown to the user

► Typically installed by the user itself

Malware Types with respect to Spreading

7IT-Security - Chapter 10 Malwar and Binary Exploitation

Virus

► Software fragment that attaches to an existing

executable

► Can replicate itself from one infected executable

to another

Worm

► Program that actively seeks for machines to infect

► Infects new machines by exploiting one or more

software vulnerabilities

► Uses network connections, shared media email,…to

spread from one machine to another

Overview

8IT-Security - Chapter 10 Malwar and Binary Exploitation

Malware Types by Spreading

► Viruses

► Worms

► Trojans

Initial Infection

► Malicious Attachments

► Installing malicious Applications

► Software Vulnerabilities

► Misconfigured access controls

► Social engineering

Botnets

► C&C Infrastructures

► DGAs

► Sinkholing

Typical Payloads

► DDoS Engines

► SPAM Engines

► Phishing Engines

► Information Stealing

► Miners

● Centralized

► Attacker operates central infrastructure to distribute

commands to the victim machines

► Two main techniques used

§ IRC Servers: commands are pushed to connected clients

§ HTTP Servers: commands are pulled by victim clients

● Decentralized

► The victim machines form a P2P network

► Commands of an attacker are distributed from P2P directly

● Many of today’s bots are hybrid

Command and Control Techniques

9IT-Security - Chapter 10 Malwar and Binary Exploitation

Botnet
herder

Infected Machines

Infected Machines

Botnet
herder

C&C Server

● Locate C&C servers and take them down

► Analyze network traffic of infected machines

► Analyze bot malware itself by reverse engineering the code

► If it is C&C server is a compromised machine, contact legitimate owner

● Make C&C server impossible to contact

► Block domain name in DNS

► Block IP range of C&C infrastructure

► Disconnect rogue hosting companies

● Find out which devices in your network are infected by

► Sinkholing the corresponding domain names and see who connects

► Automatically warn users of infected machines

Taking Down a Centralized C&C Infrastructure

10IT-Security - Chapter 10 Malwar and Binary Exploitation

DNS Sinkholing of known Malicious Domains

11IT-Security - Chapter 10 Malwar and Binary Exploitation

SinkholeWithout Sinkhole

mal.com

6.6.6.6

6.6.6.6

mal.com

Com
m

and?

Com
m

and

137.226.107.63
mal.com

137.226.107.63

Command?

You are infected!

DNS Server
DNS Server

C&C Server
mal.com
6.6.6.6

C&C Server

● Use of Domain Generating Algorithms (DGAs)

► Change domain name of machine queried for commands e.g. by an HTTP-bot based on a DGA using a

seed (e.g. time stamp, twitter post,…) as input

► Domain names queried change frequently

► Attack has to register the queried domain names in order to be able to distribute commands

► If DGA and seed are known domain names can be blocked in local DNS

● Use of Fast Flux in DNS

► Multiple IP addresses associated with a single domain name, no one server to take down

► IP addresses quickly changed by changing DNS records

► IP addresses typically belong to compromised servers

► Still domain name can be blocked locally at DNS server on the victim’s network

Hiding the IPs of C&C Servers to Impede Take Down

12IT-Security - Chapter 10 Malwar and Binary Exploitation

Hiding C&C Server by DGA

13IT-Security - Chapter 10 Malwar and Binary Exploitation

► DGA generates domains

► Bot tries to resolve domains

► Most domains are not registered

► Bot herder registers one or more domains per day

► Bot connects to C&C server and asks for commands

6.6.6.6

NX-Response (domain does not exist)

Com
m

and?

Com
m

and

DNS Server
t3622c4773260c097e2e9b26705212ab85.ws

NX-Response (domain does not exist)

u83ccf36d9f02e9ea79a9d16c0336677e4.to

v02bec0c090508bc76b3ea81dfc2198a71.in

6.6.6.6

C&C Server

Name Description

Advanced Persistent
Threat (APT)

Sophisticated malware directed at specific business or political targets
applied persistently and effectively

Adware Advertising integrated in software, often results in pop-up ads or
redirection of a browser to a commercial site

Attack kit Set of tools for generating malware, including propagation and payload
mechanisms

Auto-rooter Malicious hacking tool used to remotely break into machines

Backdoor Any mechanism that bypasses a security check, allows unauthorized
access to functionality in a program or system

Downloader Code that installs other items on a machine, e.g. loads a larger malware
packed after initial infection

Drive-by-downloads Uses code in a compromised web site that exploits a vulnerability in the
browser or browser plugins

Exploit Code specific to exploiting a single vulnerability or set of vulnerabilities

Flooder (DoS engine) Generates large volume of data, e.g. to carry out denial of service attack

Malware Terminology

14IT-Security - Chapter 10 Malwar and Binary Exploitation

Name Description

Key logger Captures keystrokes on the infected system

Logic bomb Code inside a malware, triggers when a specific condition is met

Macro virus Uses macro or scripting code, typically embedded in document

Mobile code Code that is portable between different platforms

Rootkit Set of hacker tools used to hide the malware and gain root access

Spam engines Used to send large volumes of unwanted email

Spyware Collects information from a computer and transmits it to another system (e.g.
key strokes, screen shots, network traffic…)

Trojan horse Appears to be useful but also has a secondary malicious purpose

Virus Tries to replicate itself into executable of script code when executed

Worm Runs independently and propagates copies of itself, typically uses software
vulnerability

Bot (Zombie) Activated on an infected machine to gain remote control to launch attacks on
other machines

Malware Terminology

15IT-Security - Chapter 10 Malwar and Binary Exploitation

Overview

16IT-Security - Chapter 10 Malwar and Binary Exploitation

Malware Types by Spreading

► Viruses

► Worms

► Trojans

Initial Infection

► Malicious Attachments

► Installing malicious Applications

► Software Vulnerabilities

► Misconfigured access controls

► Social engineering

Botnets

► C&C Infrastructures

Typical Payloads

► DDoS Engines

► SPAM Engines

► Phishing Engines

► Information Stealing

► Miners

● Spread mostly over Emails but also over Instant Messengers and SMS

● May contain executable code or files with macro viruses

● Often used in connection with social engineering, e.g.,

► Email pretending to be from some reputable business

§ Pretending to contain an order confirmation, tax information, bill,…

► Email pretending to answer to job advertisements or call for bids,…

§ Pretending to contain application papers, offers,…

► Emails pretending to alert users of security breaches etc.

§ Pretending to contain cleaning software that urgently needs to be run,…

● E.g., according to BSI-Lagebild 2022:

► 34 000 emails per month filtered in German government networks

Malicious Attachments

17IT-Security - Chapter 10 Malwar and Binary Exploitation

● Trojans are typically deliberately installed by users

● User tricked into installing them by claimed functionality

► Free versions of games

► Free anti-virus products

► …

● Most common strategy used to infect mobile devices still

Installing Malicious Applications

18IT-Security - Chapter 10 Malwar and Binary Exploitation

Software Vulnerabilities

19IT-Security - Chapter 10 Malwar and Binary Exploitation

0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000

Execute Unauthorized Code or Commands

Read Application Data

DoS

Bypass Protection Mechanism

Modify Memory

Read Memory

Modify Application Data

Read Files or Directories

Gain Privileges or Assume Identity

Modify Files or Directories

Hide Activities

Unexpected State

Alter Execution Logic

Reduce Performance

Quality Degradation

Bekannt gewordene Schwachstellen nach möglicher Schadwirkung
Anzahl

© Bundesamt für Sicherheit in der Informationstechnik 2023

Buffer Overflow: A condition at an interface under which more input can be
placed into a buffer than the capacity allocated for it, overwriting other

information. Attackers exploit such a condition to crash a system or to insert
specially crafted code that allows them to gain control of the system

Example for Execution of Unauthorized Code: Buffer Overflow – Definition by NIST

20IT-Security - Chapter 10 Malwar and Binary Exploitation

Example for a Basic Buffer Overflow in C Code

21IT-Security - Chapter 10 Malwar and Binary Exploitation

gets() does not do
any length checking!

Copies some expected
tag value into str1

Assume tag is
START

● The simple example on the last slide results in a variable corruption

► Overly long input data overwrites memory location of another variable

► This may already result in a serious attack

§ E.g., if next_tag contained a password to which the input (str2) is to be compared before access to some system resources are

granted

● More sophisticated buffer overflows target corruption of program control addresses in order to alter

the flow of execution of the program

● To exploit any type of buffer overflow vulnerability an attacker needs to

► Identify a buffer overflow vulnerability in some program that can be triggered using externally sourced data under the

attacker’s control

§ E.g., by inspecting the source code of a program or using fuzzing tools

► Understand how that buffer will be stored in the processes memory and can thus be used to corrupt adjacent memory

locations (architecture and compiler dependent)

§ Recap on memory segmentation

Basic Buffer Overflows

22IT-Security - Chapter 10 Malwar and Binary Exploitation

● Compiled program’s memory is divided into five segments

► text, data, bss, heap, stack

► Text, data and bss segments are of static size,

► Heap and stack shrink and grow dynamically during program execution

Executable Program’s Memory Segments

23IT-Security - Chapter 10 Malwar and Binary Exploitation

Higher addresses Stack segment
Stack grows towards

lower addresses
Heap grows towards

higher addresses
Heap segment
Bss segment
Data segment

Low addresses Text segment

on most
architectures

● Suppose Web server contains this function

void func(char *str) {
char buf[126];
strcpy(buf,str);

}

● When this function is invoked, a new frame with local variables is pushed onto the stack

Stack Buffers

24IT-Security - Chapter 10 Malwar and Binary Exploitation

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

Top of
stack

Stack grows this way

buf SFP RET str

Local variables

Frame of the
calling function

Execute instruction
at this address
after func() finishes

ArgumentsPointer to
previous
frame

buf[0]
goes here

● Memory pointed to by str is copied onto stack…

void func(char *str) {
char buf[126];
strcpy(buf,str);

}

● If a string longer than 126 bytes is copied into buffer, it will overwrite adjacent stack locations

What If Buffer is Overstuffed?

25IT-Security - Chapter 10 Malwar and Binary Exploitation

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

buf str

This will be
interpreted
as return address!

overflow Top of
stack

Frame of the
calling function

● Suppose buffer contains attacker-created string

► For example, *str contains a string received from the network as input to some network service daemon

● When function exits, code in the buffer will be
executed, giving attacker, e.g., a shell

► Root shell if the victim program is setuid root

Executing Attack Code

26IT-Security - Chapter 10 Malwar and Binary Exploitation

code str Frame of the
calling function

RET

Attacker puts actual assembly
instructions into his input string, e.g.,
binary code of execve(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

Top of
stack

● strcpy does not check input size

► strcpy(buf, str) simply copies memory contents into buf starting from *str until “\0” is encountered

► ignores the size of area allocated to buf

● Many C library functions are unsafe

► strcpy(char *dest, const char *src)

► strcat(char *dest, const char *src)

► gets(char *s)

► scanf(const char *format, …)

► printf(const char *format, …)

► …

Cause: No Range Checking

27IT-Security - Chapter 10 Malwar and Binary Exploitation

● strncpy(char *dest, const char *src, size_t n)

► If strncpy is used instead of strcpy, no more than n characters will be copied from *src to *dest

§ Programmer has to supply the right value of n

● strncat(char *dest, const char *src, size_t n)

► If strncat is used, then the first n characters from *src will be appended to *dest

● Potential overflow in htpasswd.c (Apache 1.3):

… strcpy(record,user);
strcat(record,”:”);

strcat(record,cpw); …

● Published “fix” (do you see the problem?):
… strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

28IT-Security - Chapter 10 Malwar and Binary Exploitation

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

● Published “fix” for Apache htpasswd overflow:

… strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

29IT-Security - Chapter 10 Malwar and Binary Exploitation

MAX_STRING_LEN bytes allocated for record buffer

content of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

● Defense Mechanisms can broadly be divided into

► Compile time defenses, which aim to harden new programs to resist attacks

► Run-time defenses, which aim to detect and abort attacks in existing programs

● Compile-time defenses

► Choose a high-level programing language that does not permit buffer overflows

§ Programs may still be vulnerable if existing system libraries are used

§ Disadvantage: direct access to some instructions and hardware resources lost

► Encourage safe coding standards

► Language extensions and use of safe standard libraries such as libsafe

► Include additional code at compile time to detect corruption of the stack frame at runtime

§ E.g. gcc extensions such as Stackguard, Stackshield, and Return Address Defender

Defense against Buffer Overflows

30IT-Security - Chapter 10 Malwar and Binary Exploitation

● Typical memory exploit involves code injection

► Put malicious code at a predictable location in memory, usually masquerading as data

► Trick vulnerable program into passing control to it

§ Overwrite saved EIP, function callback pointer, etc.

● Idea: Make stack and other data areas non-executable

► Needs to be supported by the processor‘s memory management unit

§ Tag pages of virtual memory as non-executable

► Some useful functionality also uses executable code on the stack, e.g., nested functions in C, Linux signal handlers,…

● Support has become standard in most modern operating systems

► Protects against classic overflows, where shellcode is included in stack buffer

● Consequence:

► Newer buffer overflow exploits use more sophisticated techniques such as using code already existing on the target machine,…

Run-Time Defenses – Executable Address Space Protection

31IT-Security - Chapter 10 Malwar and Binary Exploitation

● Examples for misconfigurations include

► Weak user-selected passwords

► Weak default passwords that are not changed

► Open port such as open ssh port

► …

Misconfigured Access Controls

32IT-Security - Chapter 10 Malwar and Binary Exploitation

● Essential part of many already mentioned infection paths

► Malicious attachments

► Installing malicious applications

► …

● Other examples

► Trick users into revealing their password

► Trick administrators into resetting passwords of specific users

► Trick users on the phone / via email

► Trick users into entering account credentials into fake websites

§ Phishing

► …

Social Engineering

33IT-Security - Chapter 10 Malwar and Binary Exploitation

Overview

34IT-Security - Chapter 10 Malwar and Binary Exploitation

Malware Types by Spreading

► Viruses

► Worms

► Trojans

Initial Infection

► Malicious Attachments

► Installing malicious Applications

► Software Vulnerabilities

► Misconfigured access controls

► Social engineering

Botnets

► C&C Infrastructures

Typical Payloads

► DDoS Engines

► SPAM Engines

► Phishing Engines

► Information Stealing

► Miners

Ransome Ware

► Encrypt all or some files on the victim machine

► Ask for ransom to release encryption key

► Makes use of crypto currencies for payment

Examples for Malicious Purposes aka Payload

35IT-Security - Chapter 10 Malwar and Binary Exploitation

SPAM or Phishing Engine

► Engines that allow to sent spam or phishing

emails from the victim machine

DDoS Engine

► Enables infected machine to participate in DDoS

attacks w/o user’s consent

Key Logger or general Spyware

► Logs a user’s keystrokes and stores

them

► Sends them off to the attacker

► Thereby steals, e.g., account

credentials, credit card information…

► Turn on camera remotely to spy

Data Theft and Espionage

► Steal sensitive information from infected

machine

Examples for Payloads and Additional Malicious Functionalities

36IT-Security - Chapter 10 Malwar and Binary Exploitation

Rootkit

► allows to maintain covert root access to the

infected machine

► hides any evidence of its presence, e.g., by

installing malicious versions of standard

system programs such as netstat, ps, ls, du,

et.

Bot

► enables attacker to remotely control an

infected machine via a command-and-control

infrastructure

Crypto Miners

► install a malicious program on the victim’s

host that helps in mining crypto currencies

► Runs in the background and typically uses

computing resources while victim machine is

idle

► Spreads the energy consumption and

computing time over multiple victim

machines

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

► Chapter 21: Network Endpoint Security

§ 21.3 Malicious Software

● Wenliang Du, Computer Security a Hands-on Approach, 3rd edition, 2022

► Chapter 4: Buffer Overflows

References

37IT-Security - Chapter 10 Malwar and Binary Exploitation

