
Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 5: Authentication and Key Establishment

● In the last chapters we covered

► Symmetric and asymmetric mechanisms to provide

► Integrity protection

§ Message Authentication Codes and digital signatures schemes

► Confidentiality

§ Symmetric and asymmetric encryption schemes

● All these mechanisms require keys to be distributed

► to the authentic entities

● In this chapter we learn how to

► authenticate entities, i.e., check that they are who they claim to be

► establish keys between different entities

Overall Lecture Context

2IT-Security - Chapter 5: Authentication and Key Establishment

Overview

3IT-Security - Chapter 5: Authentication and Key Establishment

● Building Blocks for Entity Authentication

► Definition of Entity Authentication

► MAC-based authentication

► Signature-based authentication

● Key Distribution with trusted Third Parties

► Key Distribution Centers

► Certificates and Public Key Infrastructures

● Authenticated Session Key Establishment

► Definitions around session key establishment

► Authenticated Diffie Hellman variants

► Session key establishment w-o DH

► Session Key derivation principles

● Password-based authentication

► Password-based user authentication

► Password-based authenticated key

establishment

► Dictionary attacks on password-based

authentication

Unilateral entity authentication of A to B

► A (claimant) proofs its identity to B (verifier)

► B is assured that A is currently interacting with B

Definition of Entity Authentication

4IT-Security - Chapter 5: Authentication and Key Establishment

Mutual authentication

► A authenticates to B and B authenticates to A

Objectives

► Correctness: A can always successfully

authenticate to B

► Resistance against transferability: After A

authenticated to B successfully, B cannot

authenticate as A to C (∗)

► Resistance against impersonation: C ≠ A cannot

make B believe that it is A (∗)

All three objectives still hold

► if an attacker has observed multiple

authentication instances between A and B

(∗) Except for with negligible probability: guessing is of course always possible

● Assume A and B have agreed upon a secret password when they last met

● Now A authenticates to B with the following protocol

Example

5IT-Security - Chapter 5: Authentication and Key Establishment

Hi, I’m Alice!

Oh, really? Proof it!

PasswordCorrect?

► Yes!

Resistant against transferability?

► Yes, at least if Alice does not use the password in multiple places

Resistant against impersonation?

► No! The password is sent in the clear so any eavesdropper can impersonate Alice after the first run of the protocol

Idea:

► B generates a fresh challenge

§ E.g., a random number or a time stamp (implicit challenge)

► A proofs its identity by computing a response that

§ Depends on the challenge and a secret

§ Secret can be a secret key shared with B, a private key of A,…

Challenge-Response Authentication

6IT-Security - Chapter 5: Authentication and Key Establishment

Hi, I’m Alice!

Oh, really? Here’s my Challenge

Response

Response Calculation must

guarantee that the objectives hold

Example Building Bocks for Unilateral Entity Authentication based on shared key K

7IT-Security - Chapter 5: Authentication and Key Establishment

𝑅𝐴𝑁𝐷

𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷)

Alice BobAlice Bob

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

► Alice computes a 𝑀𝐴𝐶 on timestamp

► Sends timestamp and 𝑀𝐴𝐶 to Bob

► Bob verifies 𝑀𝐴𝐶 by computing 𝑀𝐴𝐶 on received

timestamp and comparing it to received 𝑀𝐴𝐶

► Bob checks if 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is in an acceptable range

around Bob’s current time

► Bob selects a random number RAND as challenge

and sends it to Alice

► Alice computes a MAC on RAND using K

► Bob verifies that the received MAC corresponds to

the one he computes using RAND as input

Check 𝑀𝐴𝐶
Verify 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is current

Check 𝑀𝐴𝐶 by computing it
on sent 𝑅𝐴𝑁𝐷

Requires time
synchronization

𝐾 𝐾 𝐾 𝐾

Unilateral authentication of A to B based on a private key 𝑠𝑘 of Alice assuming Bob knows Alice’s public key 𝑝𝑘

Example Building Bocks for Unilateral Entity Authentication

8IT-Security - Chapter 5: Authentication and Key Establishment

𝑅𝐴𝑁𝐷

𝑠𝑖𝑔𝑠𝑘(𝑅𝐴𝑁𝐷)

Alice BobAlice Bob

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
sig𝑠𝑘(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

► Alice computes a signature on the current

timestamp (implicit challenge) using 𝑠𝑘

► Sends the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 and the signature to Bob

► Bob verifies signature with 𝑝𝑘 and checks if

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is in an acceptable range

► Bob selects a random number 𝑅𝐴𝑁𝐷 as challenge

and sends it to Alice

► Alice computes a signature on 𝑅𝐴𝑁𝐷

► Bob verifies that the received signature is a

signature on the sent 𝑅𝐴𝑁𝐷

Check sig𝑠𝑘 with 𝑝𝑘
Verify 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is current Verify 𝑠𝑖𝑔𝑠𝑘 𝑅𝐴𝑁𝐷

on sent 𝑅𝐴𝑁𝐷 with 𝑝𝑘

𝑝𝑘𝑝𝑘

● Mutual authentication of A to B and B to A based on a shared secret key K

Example Building Bocks for Mutual Entity Authentication

9IT-Security - Chapter 5: Authentication and Key Establishment

𝑅𝐴𝑁𝐷𝐵

𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB) ∥ RANDA

Alice BobAlice Bob

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥ 𝐼𝐷𝐴)

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥ 𝐼𝐷𝐵) 𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷𝐵 ∥ RANDA)

Does work with signatures just as well

𝐾 𝐾 𝐾 𝐾

Simply combining the building blocks for unilateral authentication MAY NOT be SECURE

Example for Insecure Building Blocks for Mutual Authentication

10IT-Security - Chapter 5: Authentication and Key Establishment

𝑅𝐴𝑁𝐷

𝑀𝐴𝐶𝐾 𝑅𝐴𝑁𝐷

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

► Attacker could claim to be Bob and just reflect

Alice’s message to Alice

► Not impersonation resistant

► Need messages of Alice and Bob to be different

► Attacker could start a second run of the protocol by

reflecting RAND back to Bob

► Wait for Bob’s reply

► Then reflect the MAC computed by Bob back to Bob

𝑅𝐴𝑁𝐷

𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷)

Bob thinks this
is a new

authentication
started by Alice

Alice will see
that the

timestamp of
Bob is a little

behind hers but
may accept this

● Making A and B compute MACs on different messages, where each message contains input

controlled by the other part protects these building blocks from reflection attacks

Protection against Reflection Attacks

11IT-Security - Chapter 5: Authentication and Key Establishment

𝑅𝐴𝑁𝐷𝐵
? ? 	∥ 𝑅𝐴𝑁𝐷	?𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥

𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥ 𝐼𝐷𝐴)

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥ 𝐼𝐷𝐴)

► Attacker can only reflect message including Alice’s

ID which will be detected by Alice

► Attacker can only reflect with the random number

in Bob’s order not in the order expected from Alice

Can’t compute
𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷𝐵 ∥ 𝑅𝐴𝑁𝐷)

𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷𝐵 ∥ 𝑅𝐴𝑁𝐷)

Overview

12IT-Security - Chapter 5: Authentication and Key Establishment

● Building Blocks for Entity Authentication

► Definition of Entity Authentication

► MAC-based authentication

► Signature-based authentication

● Key Distribution with trusted Third Parties

► Key Distribution Centers

► Certificates and Public Key Infrastructures

● Authenticated Session Key Establishment

► Definitions around session key establishment

► Authenticated Diffie Hellman variants

► Session key establishment w-o DH

► Session Key derivation principles

● Password-based authentication

► Password-based user authentication

► Password-based authenticated key

establishment

► Dictionary attacks on password-based

authentication

► Authentication exchange typically only guarantees that

one specific message originates from a particular entity

► If hash of previously sent messages is included, these

can be authenticated as well

► But: what about future messages exchanged? And what

about encryption?

● Could keep signing messages if signatures are used

► Very inefficient

● Could keep computing MACs with key K on all

messages

► Key K would be used repeatedly on lots of traffic

Entity Authentication Alone is useless!

13IT-Security - Chapter 5: Authentication and Key Establishment

Solution: Session Keys

► Establish new session keys for integrity

protection and encryption

► Thus, create independence across

communication sessions

► Limit amount of data protected under

the same key

A session key establishment protocol is a protocol

► that establishes a shared secret key between two

parties

Session Key Establishment Protocols

14IT-Security - Chapter 5: Authentication and Key Establishment

There are two types of key establishment protocols

► Key transport protocols

§ Key generated by one party, securely transported to the

other party

► Key agreement protocols

§ shared key is derived from input of bother parties, e.g.

like in the Diffie-Hellman key agreement protocol

Examples

► Simple key transport protocol

§ Assume A and B share a long-term key 𝐾

§ A selects a session key 𝑆𝐾

§ Computes 𝐸𝐾(𝑆𝐾) and sends it to B

§ B decrypts 𝐸𝐾(𝑆𝐾)with K and thus obtains 𝑆𝐾

► Diffie-Hellman key agreement (Chapter4)

§ Each party selects a random private value

§ Computes a public value based on private one

§ Parties exchange the public values

§ Each computes that key as function of own

private and other party’s public value

Authenticated key Establishment

► Entity authentication (see above)

► Implicit key authentication: a party is

assured that no other party but a

particular second party may gain access

to the established key

Objectives of Key Establishment Protocols

15IT-Security - Chapter 5: Authentication and Key Establishment

Additional Objectives

► Key freshness: a party is assured that the key is newly

generated and not a replayed old key

► Perfect forward secrecy: a future compromise of long-

term keys does not compromise past session keys

► Protection against known-key attacks: the

compromise of a past session key does not allow

§ a passive adversary to compromise future session keys

§ an active attacker to impersonate a party in the future

Explicit key authentication

► Implicit key authentication

► Key confirmation: a party is assured

that a second party has possession of

the established key
The objectives can hold for none, only one or both parties

● When analyzing the efficiency of protocols, we consider

► Number of messages exchanged between parties

► Bandwidth required by the messages (total number of bits transmitted)

► Complexity of computations that need to be carried out by the parties

► Possibility for pre-computation to reduce the online load during protocol

execution

Efficiency Considerations

16IT-Security - Chapter 5: Authentication and Key Establishment

Simple key transport protocol

► Assume A and B share a long-term key 𝐾

► A selects a session key 𝑆𝐾

► Computes 𝐸𝐾(𝑆𝐾) and sends it to B

► B decrypts 𝐸𝐾(𝑆𝐾) with K and thus obtains 𝑆𝐾

Example: Simple key transport protocol

17IT-Security - Chapter 5: Authentication and Key Establishment

Properties

► Implicit key authentication

§ Yes, from both parties’ point of view

► Key freshness

§ Yes, from A’s point of view

§ No from B’s point of view

► Perfect forward secrecy

§ No

► Protection against known keys

§ Past session keys have no influence on new future

ones

► Authenticated key establishment

§ No! No entity authentication (replay possible)

Choose 𝑆𝐾	
Computes 𝐸𝐾(𝑆𝐾)

𝐸𝐾(𝑆𝐾)

Decrypts 𝐸𝐾(𝑆𝐾)

𝐾𝐾

Simple key transport protocol

► Assume A and B share a long-term key 𝐾

► A selects a session key 𝑆𝐾

► Computes 𝐸𝐾(𝑆𝐾) and sends it to B

► B decrypts 𝐸𝐾(𝑆𝐾) with K and thus obtains 𝑆𝐾

Example: Simple key transport protocol

18IT-Security - Chapter 5: Authentication and Key Establishment

Properties

► Implicit key authentication

§ Yes, from both parties’ point of view

► Key freshness

§ Yes, from A’s point of view

§ No from B’s point of view

► Perfect forward secrecy

§ No

► Protection against known keys

§ Past session keys have no influence on new ones

► Authenticated key establishment

§ No! No entity authentication (replay possible)

Choose 𝑆𝐾	
Computes 𝐸𝐾(𝑆𝐾)

𝐸𝐾(𝑆𝐾)

Decrypts 𝐸𝐾(𝑆𝐾)

𝐾𝐾

► Implicit key authentication

§ No

► Key freshness

§ Yes, from both parties’ point of view

► Perfect forward secrecy

§ Yes, future keys completely independent

► Protection against known keys

§ Past session keys have no influence on future

ones

► Authenticated key establishment

§ No! No entity authentication (replay possible), no

implicit key authentication

Diffie-Hellman Key Agreement

19IT-Security - Chapter 5: Authentication and Key Establishment

Choose random 𝑎
Compute 𝐴 = 𝑔(mod 𝑝

Choose random 𝑏
Compute 𝐵 = 𝑔) mod 𝑝

𝐴

𝐵
Compute K= 𝐴) mod 𝑝

Compute K= 𝐵(mod 𝑝

As 𝐴+ mod 𝑝 = 𝑔,+ = 𝑔+, = 𝐵, mod 𝑝

Alice and Bob now share the secret key K = 𝒈𝒂𝒃

► Implicit key authentication

§ No

► Key freshness

§ Yes, from both parties’ point of view

► Perfect forward secrecy

§ Yes, future keys completely independent

► Protection against known keys

§ Yes, past session keys have no influence on future

ones

► Authenticated key establishment

§ No! No entity authentication (replay possible), no

implicit key authentication

Diffie-Hellman Key Agreement

20IT-Security - Chapter 5: Authentication and Key Establishment

Choose 𝑎
Compute 𝐴 = 𝑔(mod 𝑝

Choose 𝑏
Compute 𝐵 = 𝑔) mod 𝑝

𝐴

𝐵
Compute K= 𝐴) mod 𝑝

Compute K= 𝐵(mod 𝑝

As 𝐴+ mod 𝑝 = 𝑔,+ = 𝑔+, = 𝐵, mod 𝑝

Alice and Bob now share the secret key K = 𝒈𝒂𝒃

● Implicit key authentication

► Public DH value has been

signed by the desired

second party

► Only that party (if any) will

be able to compute K

● But: no entity authentication

► Old messages could be

replayed

► Parties do not get

guarantee that other party

interacts right now

Diffie-Hellman Key Agreement with Implicit Key Authentication

21IT-Security - Chapter 5: Authentication and Key Establishment

𝑨 ∥ 𝒔𝒊𝒈𝑨

𝑩 ∥ 𝒔𝒊𝒈𝑩

Public key: 𝑝𝑘𝐴
Private key: 𝑠𝑘𝐴
Public key Bob: 𝑝𝑘𝐵

Public key: 𝑝𝑘𝐵
Private key: 𝑠𝑘𝐵
Public key of Alice: 𝑝𝑘𝐴

Pick 𝒂 ∈
ℙ
{2,… , 𝑝 − 2}

Compute 𝑨 = 𝒈𝒂mod 𝒑
Compute 𝒔𝒊𝒈𝑨 = 𝒔𝒊𝒈𝒔𝒌𝑨(𝐴) Verify 𝑠𝑖𝑔𝐴 with 𝑝𝑘𝐴

Pick 𝒃 ∈
ℙ
{2,… , 𝑝 − 2}

Compute 𝑩 = 𝒈𝒃mod 𝒑
Compute 𝒔𝒊𝒈𝑩 = 𝒔𝒊𝒈𝒔𝒌𝑩 𝐵
Compute 𝑲 = 𝑨𝒃𝑚𝑜𝑑 𝒑

Verify 𝑠𝑖𝑔𝐵 with 𝑝𝑘𝐵
Compute 𝑲 = 𝑩𝒂𝑚𝑜𝑑 𝒑

● Mutual authentication between

Alice and Bob

► See slide 8

► A and B act as random values

here

● Implicit key authentication

► Alice is assured that B is from B

so only Bob can compute K (and

herself)

► Same holds for Bob

Ø Authenticated key agreement

Authenticated Diffie-Hellman Key Agreement with Signatures

22IT-Security - Chapter 5: Authentication and Key Establishment

𝑨

𝑩 ∥ 𝒔𝒊𝒈𝑩

Public key: 𝑝𝑘𝐴
Private key: 𝑠𝑘𝐴
Public key Bob: 𝑝𝑘𝐵

Public key: 𝑝𝑘𝐵
Private key: 𝑠𝑘𝐵
Public key of Alice: 𝑝𝑘𝐴

𝒔𝒊𝒈𝑨

Pick 𝒂 ∈
ℙ
{2,… , 𝑝 − 2}

Compute 𝑨 = 𝒈𝒂mod 𝒑

Pick 𝒃 ∈
ℙ
{2,… , 𝑝 − 2}

Compute 𝑩 = 𝒈𝒃mod 𝒑
Compute 𝒔𝒊𝒈𝑩 = 𝒔𝒊𝒈𝒔𝒌𝑩(𝐵 ∥ 𝐴)

Verify 𝑠𝑖𝑔𝐵 with 𝑝𝑘𝐵
Compute 𝒔𝒊𝒈𝑨 = 𝒔𝒊𝒈𝒔𝒌𝑨(𝐴 ∥ 𝐵)
Compute 𝑲 = 𝑩𝒂𝑚𝑜𝑑 𝒑

Verify 𝑠𝑖𝑔𝐴 with 𝑝𝑘𝐴
Compute 𝑲 = 𝑨𝒃𝑚𝑜𝑑 𝒑 Works with a shared key and MACs as well!

Example Session Key Establishment without DH

23IT-Security - Chapter 5: Authentication and Key Establishment

𝑹𝑨𝑵𝑫𝑨

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A) ∥ 𝑅𝐴𝑁𝐷B

Shared secret key 𝐾

Pick a random number
𝑹𝑨𝑵𝑫𝑨

Pick a random number 𝑹𝑨𝑵𝑫𝑩

Compute
𝑺𝑲 = 𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Compute
𝑺𝑲 = 𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Verify 𝑀𝐴𝐶 received

Verify 𝑀𝐴𝐶 received

Shared secret key 𝐾

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷𝐴 ∥ 𝑅𝐴𝑁𝐷B)

● Implicit key authentication

► Yes!𝐾 required to compute

𝑆𝐾

● Key freshness

► Yes, for both parties

● Perfect forward secrecy

► No! If K broken and exchange

recorded, then SK broken

● Protection against known keys

► Past session keys have no

influence on future ones

● Authenticated key establishment

► Yes!

Session Key Derivation: Key Hierarchies

24IT-Security - Chapter 5: Authentication and Key Establishment

Example Hierarchy● Key establishment protocols

► establish a session key 𝑆𝐾 based on long term

credentials and session specific random numbers

● 𝑆𝐾 often used to derive additional keys, e.g.

► Integrity key and an encryption key

► Different keys for different directions

► A key derivation key for future derivations

● Results in key hierarchy

► Key derivation should be efficient

► A break of a lower layer key does not break

higher layer keys or keys on the same layer

Key establishment protocol

Long-term
credentials

𝑺𝑲

𝑬𝑲𝟏 𝑰𝑲𝟏 𝑬𝑲𝟐 𝑰𝑲𝟐 𝑲𝑫𝑲

𝑫𝑲𝟏 𝑫𝑲𝟐

𝑀𝐴𝐶&'(𝑘𝑒𝑦𝑙𝑎𝑏𝑒𝑙)

𝑀𝐴𝐶'('(𝑘𝑒𝑦𝑙𝑎𝑏𝑒𝑙)

RANDs

Overview

25IT-Security - Chapter 5: Authentication and Key Establishment

● Building Blocks for Entity Authentication

► Definition of Entity Authentication

► MAC-based authentication

► Signature-based authentication

● Key Distribution with trusted Third Parties

► Key Distribution Centers

► Certificates and Public Key Infrastructures

● Authenticated Session Key Establishment

► Definitions around session key establishment

► Authenticated Diffie Hellman variants

► Session key establishment w-o DH

► Session Key derivation principles

● Password-based authentication

► Password-based user authentication

► Password-based authenticated key

establishment

► Dictionary attacks on password-based

authentication

Facilitating Key Distribution with Trusted Third Parties

26IT-Security - Chapter 5: Authentication and Key Establishment

Symmetric Case: Key Distribution Centers

► Each client shares a secret key with the key

distribution center

► The key distribution center helps to establish

keys between its clients

Asymmetric Case: Certification Authorities

► Each client has the public key of a certification

authority pre-installed

► The certification authority helps to distribute

authentic copies of public keys

Assumption so far: Alice and Bob

► Either already share a secret (long-term) key

► Or have an authentic copy of each other’s public keys

Trusted Third Party

► Mediator to reduce the number of pre-installed keys required

Example: Key Transport with a KDC

27IT-Security - Chapter 5: Authentication and Key Establishment

𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥ 𝑵𝑨 ∥ 𝑵𝑩 𝐸'. 𝐾𝐴𝐵 ∥ 𝐼𝐷) ∥ 𝑵𝑨 ∥ 𝐸'/ 𝐾𝐴𝐵 ∥ 𝐼𝐷*∥ 𝑵𝑩

KDC

Alice Bob

𝐼𝐷𝐵 ∥ 𝑵𝑩

𝐸'/ 𝐾𝐴𝐵 ∥ 𝐼𝐷*∥ 𝑵𝑩

𝐼𝐷𝐴 :𝐾/
𝐼𝐷𝐵 :𝐾0
𝐼𝐷𝐶 :𝐾1

⋮

● KDC shares a long-term secret key 𝐾/ with

Alice and 𝐾0 with Bob

● Upon request, KDC generates a session key

𝐾𝐴𝐵 for Alice and Bob

● 𝐸𝐾 here stands for an AEAD encryption with 𝐾

● 𝑁𝐵 and	𝑁𝐴 authenticates KDC to Bob and Alice

respectively

● Inclusion of 𝐼𝐷𝐵 in 𝐸2& 𝐾𝐴𝐵 ∥ 𝐼𝐷0 ∥ 𝑵𝑨

gives Alice implicit key authentication of 𝐾𝐴𝐵

● Inclusion of 𝐼𝐷𝐴 in 𝐸2' 𝐾𝐴𝐵 ∥ 𝐼𝐷/∥ 𝑵𝑩 gives

Bob implicit key authentication of 𝐾𝐴𝐵

● No perfect forward secrecy, no key freshness,

protection against known key attacks

Facilitating Key Distribution with Trusted Third Parties

28IT-Security - Chapter 5: Authentication and Key Establishment

Symmetric Case: Key Distribution Centers

► Each client shares a secret key with the key

distribution center

► The key distribution center helps to establish

keys between its clients

Asymmetric Case: Certification Authorities

► Each client has the public key of a certification

authority pre-installed

► The certification authority helps to distribute

authentic copies of public keys

Assumption so far: Alice and Bob

► Either already share a secret (long-term) key

► Or have an authentic copy of each other’s public keys

Trusted Third Party

► Mediator to reduce the number of pre-installed keys required

● Certification Authority

► Sings a certificate for each of its clients

► Certificate

§ owner ID: identifier of the owner of the public key

§ public key of owner

§ issuer ID: identifier for the CA that issued the certificate

§ Validity period: not before, until dates defining when this

certificate becomes valid and when it expires

§ Signature of the issuing CA on all of the content of the

certificate, binds public key to owner ID

● Anyone in possession of the public key of the CA

► Can verify the authenticity of the public key of the owner

Certification Authorities and Public Key Infrastructures

29IT-Security - Chapter 5: Authentication and Key Establishment

Certificate

owner ID

public key of owner

issuer ID

validity period

signature of issuer

● Anyone in possession of the public key of the CA

► Can verify the authenticity of the public key of the owner

● Certificate verification entails

► checking the validity period of the certificate

► checking that the owner ID is as expected

§ E.g., in the context of web does the domain name included as

identifier in the certificate match the host name part of the

URL of the visited website

► checking the signature on the certificate with the public

key of the issuer

► checking the revocation status of the certificate

Certificate Verification

30IT-Security - Chapter 5: Authentication and Key Establishment

Certificate

owner ID

public key of owner

issuer ID

validity period

signature of issuer

Certificates may need to be revoked before they expire

► Due to stolen devices, precaution after malware infection,…

► Due to lost passwords unlocking private keys

Certificate Revocation Approaches

31IT-Security - Chapter 5: Authentication and Key Establishment

Certificate revocation lists = CRLs

► Issuing CA periodically publishes a signed CRL

► CRL includes serial numbers of all revoked

unexpired certificates

► Disadvantage: revocation only as timely as

period used to publish CRLs

Online Certificate Status Protocol = OSCP

► Protocol to obtain immediate feedback on

the revocation status of certificates

► Advantage: very timely revocation possible

► May add additional overhead and requires

connectivity to the OSCP server

● Hierarchies of certification authorities

► A root CA signs certificates for the public keys of

second level CAs

► Second level CAs sign certificates of clients

► More levels possible

Chains of Certificates

32IT-Security - Chapter 5: Authentication and Key Establishment

Certificate
owner ID

public key of owner

issuer: CA ID

validity period

signature of CA

CA Certificate
CA ID

public key of CA

issuer: Root CA ID

validity period

signature Root CA

Root CA Certificate
Root CA ID

public key of Root

issuer: Root CA ID

validity period

signature of issuer

Get certificate

Get certificate

verify

verify

● Check validity period of each certificate

● Check revocation status on each certificate

● Verify signature on each certificate in the chain

● Check if root CA is trusted for this application

● Check if owner ID is as expected

Verifying Chains of Certificates

33IT-Security - Chapter 5: Authentication and Key Establishment

Certificate
owner ID

public key of owner

issuer: CA ID

validity period

signature of CA

CA Certificate
CA ID

public key of CA

issuer: Root CA ID

validity period

signature Root CA

Root CA Certificate
Root CA ID

public key of Root

issuer: Root CA ID

validity period

signature of issuer

Get certificate

Get certificate

verify

verify

● 𝑐𝑒𝑟𝑡𝐵 / 𝑐𝑒𝑟𝑡𝐴: chain of

certificates starting

with a certificate for A

/ B, where the last one

is the root certificate

Example Secure Authenticated DH with Chain of Certificates

34IT-Security - Chapter 5: Authentication and Key Establishment

𝑨

𝑩 ∥ 𝒔𝒊𝒈𝑩∥ 𝒄𝒆𝒓𝒕𝑩

Public key: 𝑝𝑘𝐴
Private key: 𝑠𝑘𝐴
Public key of root CA: 𝑝𝑘𝑟𝑜𝑜𝑡

𝒔𝒊𝒈𝑨 ∥ 𝒄𝒆𝒓𝒕𝑨

Pick 𝒂 ∈ ℝ{2,… , 𝑝 − 2}
Compute 𝑨 = 𝒈𝒂mod 𝒑

Pick 𝒃 ∈ ℝ{2,… , 𝑝 − 2}
Compute 𝑩 = 𝒈𝒃mod 𝒑
Compute 𝒔𝒊𝒈𝑩 = 𝒔𝒊𝒈𝒔𝒌𝑩(𝐵 ∥ 𝐴)

Verify chain of certificates 𝒄𝒆𝒓𝒕𝑩
Verify 𝑠𝑖𝑔𝐵 with 𝑝𝑘𝐵 extracted

from B’s certificate
Compute 𝒔𝒊𝒈𝑨 = 𝒔𝒊𝒈𝒔𝒌𝑨(𝐴 ∥ 𝐵)
Compute 𝑲 = 𝑩𝒂𝑚𝑜𝑑 𝒑 Verify chain of certificates 𝒄𝒆𝒓𝒕𝑨

Verify 𝑠𝑖𝑔𝐴 with 𝑝𝑘A extracted from A’s certificate
Verify 𝑠𝑖𝑔𝐴 with 𝑝𝑘𝐴
Compute 𝑲 = 𝑨𝒃𝑚𝑜𝑑 𝒑

Public key: 𝑝𝑘𝐵
Private key: 𝑠𝑘𝐵
Public key of root CA: 𝑝𝑘𝑟𝑜𝑜𝑡

Overview

35IT-Security - Chapter 5: Authentication and Key Establishment

● Building Blocks for Entity Authentication

► Definition of Entity Authentication

► MAC-based authentication

► Signature-based authentication

● Key Distribution with trusted Third Parties

► Key Distribution Centers

► Certificates and Public Key Infrastructures

● Authenticated Session Key Establishment

► Definitions around session key establishment

► Authenticated Diffie Hellman variants

► Session key establishment w-o DH

► Session Key derivation principles

● Password-based authentication

► Password-based user authentication

► Password-based authenticated key

establishment

► Dictionary attacks on password-based

authentication

Three main flavors used in practice

Password-based Authentication

36IT-Security - Chapter 5: Authentication and Key Establishment

• Certificate-based server
authentication

• Password-based user
authentication

• Vulnerable to dictionary
attacks if password file
stolen

Used, e.g., in
HTTPs

• MAC-based authenticated
key exchange

• MAC-key derived from
password

• Vulnerable to dictionary
attacks

Used, e.g., in 4-
Way-Handshake
in WPA2 WLAN

• Password-Authenticated
Diffie Hellman

• Protected against
Dictionary attacks

• Same (one-time) password
entered on both devices

Used, e.g., Secure
Authentication of
Equals in WPA3

Three main flavors used in practice

Password-based Authentication

37IT-Security - Chapter 5: Authentication and Key Establishment

• Certificate-based server
authentication

• Password-based user
authentication

• Vulnerable to dictionary
attacks if password file
stolen

Used, e.g., in
HTTPs

• MAC-based authenticated
key exchange

• MAC-key derived from
password

• Vulnerable to dictionary
attacks

Used, e.g., in 4-
Way-Handshake
in WPA2 WLAN

• Password-Authenticated
Diffie Hellman

• Protected against
Dictionary attacks

• Same password entered on
both devices

Used, e.g., Secure
Authentication of
Equals in WPA3

Advance
ITSec

Lecture

Password Length and Bit-Equivalence

38IT-Security - Chapter 5: Authentication and Key Establishment

● Assume users can chose 𝑛 character passwords

► small letters = 26 and capital letters = 26

► numbers = 10, special characters except for space = 32

● Then there are 𝟗𝟒𝒏 theoretically possible passwords

► n = 8 ⇒ ≈ 2-. possible passwords ≙ random secret key

of 52 bit

► n = 16 ⇒ ≈ 2/01 possible passwords ≙ random secret

key of 104 bit

● Users tend NOT to select passwords randomly!

► Mainly because they cannot remember random

passwords longer than 8 characters

► And on average only one of these

User-selected Passwords

Potential Passwords Passwords Selected by Users

● Distribution of 4-Digit PINs in a data base of 32 Million

Banking PINS

● Enforcing rules on the password selection reduces the

overall number of possible passwords

► E.g., if 8 characters are used and at least one of them

needs to be an upper case letter, one a lower case letter

one a number and one a special character

► Longer passwords required

● General recommendation

► Use random passwords and a password manager

Classic Example: User’s self-selected Banking PINs 2012

39IT-Security - Chapter 5: Authentication and Key Establishment

Password-based User and Certificate-based Server Authentication

40IT-Security - Chapter 5: Authentication and Key Establishment

𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑
𝐹𝑖𝑙𝑒

𝑨

𝑺 ∥ 𝒔𝒊𝒈𝑺

Public key of Server
𝑝𝑘𝑆

Public key: 𝑝𝑘S
Private key: 𝑠𝑘𝑆Pick 𝒂 ∈

ℙ
{2,… , 𝑝 − 2}

Compute 𝑨 = 𝒈𝒂mod 𝒑

Pick 𝒔 ∈
ℙ
{2,… , 𝑝 − 2}

Compute 𝑺 = 𝒈𝒔mod 𝒑
Compute 𝑲 = 𝑨𝒔𝑚𝑜𝑑 𝒑
Compute 𝒔𝒊𝒈𝑆 = 𝒔𝒊𝒈𝒔𝒌𝑺(𝑆 ∥ 𝐴)

Verify 𝑠𝑖𝑔𝑆 with 𝑝𝑘𝑆
Compute 𝑲 = 𝑺𝒂𝑚𝑜𝑑 𝒑

user, 𝑬𝑲(𝒑𝒘𝒅)

Server authenticated by a
unilaterally authenticated DH key
exchange; User authenticates to
server with pwd, pwd protected

with fresh key K

Contains usernames
and passwords

Decrypt pwd, compare
to stored pwd

Storing Passwords in Password Files (1)

41IT-Security - Chapter 5: Authentication and Key Establishment

Encrypted?

► No immediate access

► But: encryption key needs to be stored

somewhere

► Decryption adds overhead

User 𝒑𝒘𝒅
Alice D^6as$%kjahG
Bob (*&)A8a;sdifh

User 𝒑𝒘𝒅 𝑬𝑲(𝒑𝒘𝒅)
Alice D^6as$%kjahG Svl0EKlmp76XcePiC+wL7g
Bob (*&)A8a;sdifh 1YE/i6MU4lBEnmbq/Wn1Zw

Key

a57987a344d32336

In the clear?

► If attacker gains access to the file, break

is immediate

Storing Passwords in Password Files (2)

42IT-Security - Chapter 5: Authentication and Key Establishment

Store 𝐡 𝒑𝒘𝒅 using a cryptographic hash function

► Attacker only learns hashes from file

► Cannot compute pre-images of the hashes

► But: what if multiple users use same pwd?

Better: store random salt and 𝐡 𝒑𝒘𝒅 ∥ 𝒔𝒂𝒍𝒕

► Now users using the same passwords will

have different hashes

User 𝒑𝒘𝒅 salt 𝑺𝑯𝑨𝟐𝟓𝟔
Alice D^6as$%kjahG c25559cad0aca1566d4ba7609759e2de824c8af9e1e0b27891e99ac495e77877

Bob (*&)A8a;sdifh f69f1260b38daf282d8d729df34e40c0bdf0fb634f72fe7c17b09054d96c5724

Clare (*&)A8a;sdifh f69f1260b38daf282d8d729df34e40c0bdf0fb634f72fe7c17b09054d96c5724

Alice D^6as$%kjahG (*daw 3bcc5a93e5510780f3ce13b8f673758cee1e246963be321ced2d6f2d74054558

Bob (*&)A8a;sdifh &OGa8 373d0dd007c4409bdc5a05e6174e5322e88cc16d736d71c99a8876f01c70a9d9

Clare (*&)A8a;sdifh 6YY34 5ee7d56e09d86f7d262fc0d68f27861644252c1dbd80cb59bbd6cedf6c080831

● Dictionary

► List of commonly used passwords

● Dictionary attack

► Try out all passwords in the dictionary

Dictionary Attacks on Password Files

43IT-Security - Chapter 5: Authentication and Key Establishment

Attack on a stolen password file with salts

► Compute 𝐡 𝒑𝒘𝒅 ∥ 𝒔𝒂𝒍𝒕 for any 𝑠𝑎𝑙𝑡 in

the password file and any 𝑝𝑤𝑑 in the

dictionary

► Compare computed hashes with stored

ones
Attack on a stolen password files w/o salts

► Pre-compute 𝐡 𝒑𝒘𝒅 for any 𝑝𝑤𝑑 in the

dictionary

► Compare computed hashes with stored

ones Needs to be done only once

Salts are pwd-file specific

● Secret key generated by a

shared password

● Note that the key is only as

strong as the password

► K will be 128 bit but will

be as easily guessable as

the pwd

Authentication and Key Agreement with Password-Generated MAC Keys

44IT-Security - Chapter 5: Authentication and Key Establishment

𝑹𝑨𝑵𝑫𝑨

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A) ∥ 𝑅𝐴𝑁𝐷B

𝐾 = ℎ(𝑝𝑤𝑑)

Pick a random number
𝑹𝑨𝑵𝑫𝑨

Pick a random number 𝑹𝑨𝑵𝑫𝑩

Compute
𝑺𝑲 = 𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Compute
𝑺𝑲 = 𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Verify 𝑀𝐴𝐶 received

Verify 𝑀𝐴𝐶 received

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷A ∥ 𝑅𝐴𝑁𝐷B)

𝐾 = ℎ(𝑝𝑤𝑑)

Dictionary Attack on Password-Authenticated Key Agreement

45IT-Security - Chapter 5: Authentication and Key Establishment

● Record the message flow

► 𝑅𝐴𝑁𝐷𝐴 , 𝑅𝐴𝑁𝐷𝐵

► 𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A)

● For pwd in the dictionary

► compute 𝑲 = 𝒉(𝒑𝒘𝒅)

► compute SK from recorded RANDs

► Check if

𝑀𝐴𝐶𝑺𝑲(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A) =

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A) recorded

► If yes: pwd = pwd

► Else: try next pwd in dictionary

𝑹𝑨𝑵𝑫𝑨

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A) ∥ 𝑅𝐴𝑁𝐷B

𝐾 = ℎ(𝑝𝑤𝑑)

Pick 𝑹𝑨𝑵𝑫𝑨

Pick 𝑹𝑨𝑵𝑫𝑩

Compute 𝑺𝑲 =
𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Compute 𝑺𝑲 =
𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Verify 𝑀𝐴𝐶 received

Verify 𝑀𝐴𝐶 received

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷A ∥ 𝑅𝐴𝑁𝐷B)

𝐾 = ℎ(𝑝𝑤𝑑)

● Entity authentication requires

► an unforgeable proof that the other entity is active in the current protocol

► session key establishment

§ Ensures continuous authentication of the authenticated entity

● Entity authentication can be

► unilateral or mutual

► be based on

§ secret keys using message authentication codes

§ or public/private key pairs

● Key Establishment protocols

► can be key agreement or key transport protocols

Summary

46IT-Security - Chapter 5: Authentication and Key Establishment

Potential properties of key establishment protocols

► entity authentication

► implicit key authentication

► key confirmation

► key freshness

► perfect forward secrecy

► protection against known key attacks

Summary

47IT-Security - Chapter 5: Authentication and Key Establishment

authenticated key establishment
explicit key authentication

● Trusted third parties can help to

► reduce the amount of pre-stored keys that need to be exchanged

► Key distribution centers are TTPs that

§ help their clients establish symmetric keys

► CAs are TTP that

§ help to distribute authentic copies of their clients’ public keys

● End-users are often authenticated with the help of passwords

► The larger the alphabet and the longer the password the stronger the password is

● End-users tend to pick specific passwords more often than others

► Can compile a dictionary of often picked passwords

Summary

48IT-Security - Chapter 5: Authentication and Key Establishment

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

► Chapter 15: Cryptographic Key Management and Distribution

► Chapter 16: User Authentication

● RFC 5869 HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

References

49IT-Security - Chapter 5: Authentication and Key Establishment

