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Overall Lecture Context

e In the security mechanisms we covered so far

» Alice and Bob needed to share the same secret key

e In this chapter we learn how asymmetric cryptosystems work
» Alice can share a single public key with multiple other parties and keeps a private key to herself
» In an asymmetric encryption scheme,

= anyone in possession of Alice’s public key can encrypt messages for Alice

= but only Alice can (with the private key) decrypt messages

» In a digital signature scheme
= only Alice can sign a messages

= anyone in possession of the public key can verify a signature on a message
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e Basic Number Theory e Digital Signatures
» Finite Fields, greatest common divisor, » Intuition on integrity protection with digital
Fermat’s theorem signatures
» Factorization » RSA as signature scheme

» Discrete Logarithms » Digital signature standard

e Public Key Encryption Schemes e Diffie-Helman Key Agreement
» Intuition » Basicidea
» RSA as encryption scheme » Man-in-the-middle attack

e Quantum Computers
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Modular Arithmetic and Residue Class Rings

letZ, ={0, 1, 2,..,n—1}withk ={x€Z|x modn = k}

Addition: Z, X Z, * Z,, a+b:=a+b Multiplication: Z,, X Z,, = Z,,, @b :=ab
Then, for all @, b € Z,, it holds that Then, for all @, b € Z,, it holds that
a+b=b+a aeb=bea

(a+b)+c=a+ (b +¢) (Geb)ec = ae(bec)

0+a=a lea=a

a+n—a=n=0 a is called invertible mod n if there is an X

€ Z, suchthataex =1

For ease of reading, we
will denote k as k mod n

: - : in th t of this lect
Thus, (Z,,+, *) forms a commutative ring with 1 IS ({285 @ kS (G

IT-Security - Chapter 4 Asymmetric Cryptography 4




Example: Addition and Multiplication in Zg

+ 0 1 2 3 4 5 ° 0 1 2 3 4 5 e Invertible in Z6:
1

0olo|[1|2]3]4]5 o|lojofo|o]o]o > Lo

e Not invertible in Zg:
1 1 2 3 | 4 510 1 0 1 2 3|4 |5

» 0,2,3,4

2 2 3 | 4 ) 0 1 210|240 2] 4

e Not all elements of Z¢ \ {0}
33|45 |0]1]2 3[o|3|0|3 |03 are invertible
4 14 5|0 |1 2|3 4 10|42 |0)| 4|2 =(Z¢ , +, *) is aring but not
5|5 |0|1|2|3]4 5105 |4](3]2]1 a finite field
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Example: Addition and Multiplication in Zcg

+|]0]1]2]|3]|4 e JO]|1]2]3]4 e Invertible in Zj:
0j]O0|1]2 |3 |4 000|000 » 1,2,3,4
111|123 [4|0 1]10|1|2|3]| 4 e Not invertible in Zs:
2|2(3]4]0]1 2(o0|2]4]1]3 > 0
3134|0112 3lol3l1lalo>2 e All elements of Z5 \{0} are
4alal0l1!]213 alolals]2]1 invertible

=(Zs , +, *) is a finite field
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Extended Euclidian Algorithm

Let gcd(n, k) denote the greatest common divisor of n and k

Then there are integers x, y such that xn + yk = gcd(n, k)

Euclidian algorithm computes gcd(n, k) Extended Euclidian algorithm
Input: integers k,n withn > k> 1 Additionally computes x, y
Setry = n,ry =k Setug =v;=1Lu; =v,=0
WHILE 1;,, > 0 WHILE 1,, > 0
Compute q41,Ti+2 With 7, = qi41 * Ti41 + Tig2 Compute Uj12= U; = 41 " Uj41

Compute V2= Vi=(i+1 * Vi1

END(WHILE) END(WHILE)

RETURN gcd(n, k) =
ged(n, k) = 1349 RETURN x = u;,;andy= ;4
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Euclidian algorithm to compute gcd (595, 408)

Setr, = 595,r; =408
To =(qq T + 13
595 = 1 -408 + 187
TN =(y° T, T 713
408 = 2 - 187 + 34
T, = (3 T3 + 1y
187 =534 + 17
r, = Q3 * T3 + Ts
34 =217 + 0

= gcd(408,595) =17

Extended Euclidian algorithm additionally computes x, y

Setuy =vi=1Lu;=v,=0

Uy = Uy — 1 Uy V)= Vo — 1V
u, =1-1-0=1 v, =0—-1-1=-1
Uz = Uy — quU V3 =71 — (q27V;
u; =0-2 -1 =-2 v;=1-2-(-1)=3
Uy = Uy — (q3U3 Vy =7V — (4373

u, =1-5-(=2) =11 v, =-1-5-(3) =—16

= 11 -595 + (—16) - 408 = 17
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Correctness of the Euclidian Algorithm

Observation: gcd(n, k) = gcd(n — k, k)
Proof:
» If d dividesn and k , then there arer,s withn = rdandk = sd
» Thusn —k = (r —s)d, so that d also dividesn — k
» Thus, any divisor of n and k also dividesn — k
» Viceverse ifd|k and d| n — k, then there are w,t withn —k = wdandk = td

» Thusn = n—k+k = (w+t)d and any divisor of n — k and k also divides n
Consequence: gcd(n, k) = gcd(nmod k , k) = gcd(n, k) = gcd(ry, k) = ged(ry, r3) ...

Applying this repeatedly until the remainder r;,, = 0 givesus r;,, = gcd(r;_,,1;) = ged(n, k)
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Existence of Multiplicative Inverses

a € 7Z,, is invertible mod n & a and n are relatively prim < gcd(n,a) =1

Proof of “=" : Assume a is invertible Proof of “<”: Assume a and n are relatively prime.
= there is an integer x such that xa = 1 modn Then gcd(a,n) = 1
=> there is an integer k such that xa = 1 + kn = there are integers x, y such that xa + yn = 1

= there is an integer k suchthat xa + (- k)n = 1 =>¥a =1 — yn = 1modn

Now if there was an integer d s.t. d|a and d|k = x is the inverse of a mod n

= d| xa + (- k)n and thus: d| 1 Z:, = Set of invertible elements in Z,,

= d = 1andthus a and n are relatively prime For p prime, Z; = Z, \ {0} and (Z,, +, *) is a field
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Euler’s ¢ function

e The number |Z; | of invertible elements of Z,, is called ¢ (n)

e For a prime number p itholdsthat p(p) = p—1

> All elements of Z, \ {0} are invertible mod p

= o) =p-1

e If n = pqg where p and g are two different prime numbers, then

o) = (p—-1D(q@-1)

» Not invertible: p, 2p,3p, ..., (@ — 1)p,qp — q elements Examples:

» Not invertible: g, 2q, ..., (p — 1)qg — another p — 1 elements Zs ={1,2,3,4},
» Theothern-q — (p—1) = n- q — p + 1elements are invertible Z, =11, 3},
=om) = (p-D@-1 Zy, =11,3,7,9}
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Euler’s Theorem

Euler’s theorem:
Foranya € Z,": a®™ = 1 modn Consequence:

For any a € Z,"and any integer s it holds that

a®?™s+1 = g mod n

Proof:
» Ifa,b € Z,*thena-b €Z*
» Multiplying all elements of Z,* with some a € Z,* just
reorders them:
= Assume X is the product of all different x, ..., X, € Z,*
- Then, forany a € Z,": ax,ax; ... axyyy = a®?™x = x
— otherwise ax; = ax;forsomei # j

= Multiplying the above equation with x~1 on both sides yields

a®?™ = 1modn
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Generalization of Euler’s Theorem

Generalization:

Letn = pq where p and g are two different prime numbers then

for all a € Z,, it holds that a®?™*! = @ mod n

Proof: Fora = 0 the equation obviously holds » Consequently, rp = sq suchthatq |r

For all invertible a € Z,, we already proofed it on the last slide > So, thereis aninteger [withr = lq

So, lets assume an a € Z,, that is not invertible > Thus, a?®™™ = a+ rp=a+lgp =a+in
» Then it is either divisible by p or by g (or both butthena = 0). = a?M*! = g modn
» Let’s assume a is not divisible by p but divisible by q.
» Then,aP™! = 1modpanda? ! = 0modq

» Thus, a?™W*1 = (@?~1)9"1g = g mod p and a®?™*! = (a9 1)P~1g = amod q

» Thus, there are integers r and s with a?™*1 = q + rp and a?™*! = q + sq
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The Factorization Problem

Definition Hardness of Factorization

Given a composite integer 7, find a non- » No known polynomial time algorithms for

. . factorization on classical computers
trivial factor of n

» Best current algorithms for classical
computers have sub-exponential run-time
= Pollard’s Rho Method
= Quadratic Sieve

= Number Sieve
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The Discrete Logarithm Problem

Definition DL Problem Definition Decisional Diffie-Hellman Problem

Given a cyclic group G, a generator g € : Given Given a cyclic group G, a generator g € G,
G, and g* but not x, find the discrete and g*, g” ,g” but not x,y, z, decide if g*¥= g

logarithm x.

e The security of many asymmetric cryptosystems is based on the hardness of the discrete

logarithm problem or the decisional Diffie-Hellman problem

¢ Relation between the two problems

» If in a group the discrete logarithm problem can be solved, the DDH problem can also be solved
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e Basic Number Theory e Digital signature schemes

» Finite Fields, greatest common divisor, » Intuition
Fermat’s theorem » RSA as signature scheme
» Factorization » Digital signature standard

» Discrete Logarithms

e Public Key Encryption Schemes e Diffie-Helman Key Agreement
» Intuition » Basicidea

» RSA as encryption scheme » Man-in-the-middle attack

e Quantum Computers
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Intuition Public Key Encryption

e Alice wants to send a confidential

plaintext to Bob

e Alice has an authentic copy of Bob’s

. Bob’s Public Ke

public key Y .
- . Plaintext |=—

—| Plaintext —

A
Ciphertext Ciphertext

e Decryption is "difficult” without the | Insecure channel

e Alice uses Bob’s public key to

Decryption

encrypt plaintext to ciphertext algorithm

e Bob uses his private key to decrypt

ciphertext to plaintext

Bob’s Private Key

T

private key

Note: The definition of an encryption scheme presented in Chapter 2 also holds for asymmetric encryption!
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e First asymmetric encryption scheme invented in 1977
» By Ron Rivest, Adi Shamir, and Leonard Adleman at MIT

» Original idea of asymmetric encryption goes back to Diffie and

Hellman, though
e Patented from 1983 to 2000

e Supports different key lengths and variable block sizes

» Currently, 2048 bit keys are considered sufficient

» Implies a block length of 2048 bit
e Requires plaintext blocks to be represented as integers

» Requires a coding scheme that converts bit strings in integers
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RSA Key Generation

Public Key Side Notes D

» Randomly select two different large prime » Large prime numbers can be found by
numbers p, q = Choosing random numbers of appropriate size
» Setn := pgq = Testing for primality with probabilistic primality

» Chose e € Zj, such that e is invertible mod ¢ (n) ests

, » If the desired bit length of the modulus is k than
» Set public key to (n, )
p and g should be k/2-bit prime numbers

Private Key
» Choose e € Z,, randomly; check if gcd(e,n) = 1

» Compute d € Z, such that ed = 1mod ¢ (n)
» Compute d from e with the Extended Euclidian

= Jinteger k suchthated = 1 + k p(n)
Algorithm

» Set private key to d
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RSA Operation

Encryption Small Example:
For a public RSA key pk = (e, n), Key generation:
Ep: Z, > Zy letp = 3, ¢ = 5,thenn = pqg = 15
E,,(m) = ¢ = m®modn o(n) = 2-4 =8
Decryption Chose e = 3, then eisinvertible mod ¢(n) as 8 and 3
For the corresponding private RSA key sk = d are relatively prime
Dy : Z, - Z, Settingd = 3wegeted = 9 = 1mod8
Dy (c) = ¢ =mmodn Encryptionof m = 7:

mémodn = 73mod 15 = 343 mod 15 = 13
Correctness of RSA

Decryptionof c = 13:

For any ciphertext c € Z,, : cdmodn = 133 mod 15 = 2197 mod 15 = 7

c?® =m®modn = m?™Wk+tl modn = m modn
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Efficient Modular Exponentiation

e RSA Encryption and Decryption: x* mod n e More efficient modular exponentiation
e “Naive” modular exponentiation e Idea: Use the binary representation of k
» Requires k modular multiplications > k=) kizi =ko+ 2(ky + 2(ky + ) )
» Problem: the size of the exponent is of the wherek; € {0,1}
same order as the size of the modulus n » Then we get x¥ = kal-zi
> Naive modular exponentiation is not » So, all we need to do is square and multiply
efficient
Example

» k=37=1+22+2°
> Sox37 =x-x2" - x2° = (((x1)?)%x)?)2x

» Two multiplications by x and 5 squares
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RSA Security (1)

Theorem:

Let p, q be prime numbersandn = p-q

Then n can be efficiently factorized iff ¢ (n) can be computed efficiently

Proof:

"

= ": If n can be efficiently factorized then p and g can

efficiently be computed from n and therefore A Factorizing n is equivalent to computing o (1)

pn) = (p—1):(q — 1) is efficiently computable

"

<" If ¢(n) is known, then one can compute p and q

from the two equationsn =p-qandp(n) = (p—1)-(g—1)
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RSA Security (2)

Theorem:

Let p, g be prime numbersandn = p - q and (e,n) a public RSA key and d the

corresponding private key. Then d can be efficiently computed from (e, n) iff n can

be factorized efficiently.

Proof:

“= ”: There is a probabilistic polynomial-time algorithm that
computes p and g from d, e, and n

“&": clear: if we can factorize n we have p and g and can

compute @ (n) and can thus compute d as the inverse of e
mod ¢ (n)

A Computing d is equivalent to factorizing n

IT-Security - Chapter 4 Asymmetric Cryptography
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RSA Security (3)

Summary:
» Compute a private RSA key d from public key (e, n) is equivalent to factorizing n

» Factorizing n is equivalent to computing ¢ (n)

A It is still unclear if there is a way to decrypt RSA-encrypted messages
without knowledge of the private key d

Recall Hardness of Factorization:

» For classical computers, there is currently no polynomial-time algorithm for factorization
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Chosen Plaintext Attack Against RSA

Recall from Chapter 2: chosen plaintext attack against a cipher

» Attacker can obtain ciphertext for plaintexts of its choice

Example: RSA can always be attacked in a chosen plaintext setting

» Any attacker with access to the public key (e, n) can generate ciphertexts for plaintexts

of its choice

= Attacker choses m and computes c = m® modn

A For deterministic asymmetric ciphers we always need to consider a chosen plaintext setting as realistic
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Semantic Security

Definition: Semantic Security
» Assume a challenger choses two plaintexts m; and m,
> He encrypts the plaintexts with a public key pk ¢; = E,x(my) and c; = Epx(my)
» He then provides m;,m,, ¢4, ¢, and pk to an adversary

» Then the public key encryption schemes is said to be semantically secure

= if the adversary cannot guess with a probability larger than 4 which ciphertext encrypts which

plaintext

A Deterministic asymmetric ciphers like (textbook) RSA are not semantically secure

IT-Security - Chapter 4 Asymmetric Cryptography 26




Turning RSA into a Semantically Secure Cipher with OAEP

e The Optimal Asymmetric Encryption Padding OAEP

» Converts message M into encoded messages EM M = h(L) 0 0 0x01 Iy
» Uses random seed to make RSA semantically secure
e Notations SES0 v
e MFG ()

» M: bit-string message to encrypt
» h: hash function M

. p

\J‘ MFG -
» seed:random seed, same length as output of h —
» L: optional label, empty string by default v

EM =/ 0x00 | maskedSeed maskedM’

» MGF: mask generation function

» Padding with zeros:

= let n be a k -byte modulus, then k — |[M| — 2|h(L)| — 2
bytes of zero bytes are used as padding

IT-Security - Chapter 4 Asymmetric Cryptography
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Backdoors in Key Generation

e Idea e Underlining Model

» Whenever RSA is used, » Manufacturer (Attacker)

- keys must be generated = Designer of the backdoor

= Integrates the backdoor in the key generation code
» Whoever implements these key generation
» User (Victim)
= can manipulate the code such that keys
= |n possession of a device or piece of code for key generation, e.g.

generated with it include a backdoor .
for RSA, manipulated by the manufacturer

» This backdoor allows him to = Can observe public and private keys generated by his device
= retrieve the private key corresponding to a » External attacker
public key generated with his implementation = Can observe public keys used by the user
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Backdoor for RSA Key Generation

Naive RSA Backdoor Unfortunately
» Key generation code with backdoor » External attacker that observes two public keys
= Fix a prime number p (e,n) and (e’,n') can compute p = gcd(n,n’)
= Choose a second prime number q at random = Thus, any external attacker that suspects this
= Setn = qp backdoor can check for it
= Select e relatively prime to ¢p(n) and d such that » User can check if the code/devices has this
ed = 1 mod @(n) backdoor in the same way

Exploiting the backdoor

» If manufacturer sees that user uses (e, n)

= compute q by n/p, from q, p, e compute d
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Backdoor for RSA Key Generation

Better RSA Backdoor Exploiting the backdoor
» Manufacturer’s RSA key pair (E,N) and D » If manufacturer sees that client uses (e, n)
» Key generation code with backdoor » Compute e? mod N = p and can use this to
= Pick random prime numbers p and q and setn compute q and then d
= Pq

— oy
Compute e = pfmod N External attacker and user

Check if e is invertible modg(n)
» Cannot check for this backdoor as they do not

If yes, compute the inverse d and output (e, n), d )
have the private key D

If no, pick a new prime number p and start again
» To the user e looks as if it was randomly picked

A Backdoors like this exist for the key generation operations of many public key cryptosystems
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e Basic Number Theory e Digital signature schemes
» Finite Fields, greatest common divisor, » Intuition
Fermat’s theorem » RSA as signature scheme
» Factorization » Digital signature standard

» Discrete Logarithms

e Public Key Encryption Schemes e Diffie-Helman Key Agreement
» Intuition » Basicidea
» RSA as encryption scheme » Man-in-the-middle attack

e Quantum Computers
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Intuition Digital Signatures

Alices’s private key Alice’s public key

Signature
Verification

v

Signature E
a | Signature ] \‘ y

Generation

Reject

e Alice uses her private key to generate a signature on the message
e Anyone in possession of Alice’s public key can verify the signature

e Difficult to generate a message, signature pair that is accepted by the signature verification

» Without access to the private key
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Definition Digital Signature Scheme

A digital signature scheme consists of

» A key generation algorithm that

= generates a public key pk for signature verification

= generates a private key sk for signature generation
» A family of signature generation algorithms sig, that

= takes a message M as input and outputs the signature sigy, (M)
» A family of signature verification algorithms ver,, that

= takes a message M and a signature sigg, (M) as input and

= returns success or failure
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Naive RSA Signatures (Insecure!)

Key generation as in RSA Encryption Signature generation

Public Key » signature s on message m: s = m% mod n
» Randomly select two large prime numbers p, g Signature verification
> Setn := pq » s =m9 Lm

» Chose e € Z, such that e is invertible mod
¢ (n)

» Set public k k=(n, i i
et public key pk = (n, e) Vulnerable to existential forgery

s Ly » Attacker can choose signature s and compute
» Compute private key sk = d € Z, such that m = s and then claim that (m, s) is a valid
ed = 1mod ¢ (n) signature
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RSA Signature Scheme

Key generation as in Naive RSA

Signature generation

» Let h be a publicly known cryptographic

hash function
» Signature sonmiss = h(m)¢
Signature verification

» On receipt of (m, S) verifier checks if

?

h(m) £ 5° modn
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Secure against existential forgery

» Attacker cannot find a message m such that

h(m) = s€ as h is pre-image resistant

Hashing before signing is also required for security A
reasons in many other asymmetric signature schemes




Attacks on Digital Signatures

Attack result Power of attacker

» Total break: (partial) recovery of the signature key » Key-Only Attack: Attacker only in possession of

» Universal forgery: forge signatures on any the public verification key

message of the attacker's choice » Known-Message Attack: Attacker observes

» Selective forgery: forge a signature on a specific some message/signature pairs; tries to

chosen message generate another valid pair

» Existential forgery: merely results in some valid » Chosen-Message Attack: Attacker can choose
message/signature pair not already known to the messages and can make the signer sign them;

adversary tries to generate another valid pair

Strength of attacker increases
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Digital Signature Algorithm

e Adopted as standard by NIST in 1994

e Standardized in FIPS 186
e Security is based on the DDH assumption
» Related to but strong than the Discrete Logarithm problem

e Can be defined over different cyclic groups for which DDH

assumption seems to hold, e.g.

» Cyclic sub-groups of order q of Z;, , where p and q are prime

numbers where q divides (p — 1)

e Variants for other cyclic groups exist

» E.g. ECDSA on specific elliptic curves over a finite field

IT-Security - Chapter 4 Asymmetric Cryptography
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Key Generation for DSA

Public parameters Example
» Two prime number p, q with gq|(p-1) DT e
> xEZZsuchthatg:=xp_q_1modp¢1 »p=11,q =5
» The smallest interger i or which g* = 1mod pisi = q » Selectx = 2, then g = 4
= Thus, g generates a sub group of order q in Z,,
» Cryptographic hash function h
Private key
» Chosea €{1,...,q — 1} uniformly at random and set sk = a Private key
Public key > Chosea =3
» Set A= g% mod p as public key pk Public key

> SetA=g%modp=43mod11 =9
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DSA Operation

Signature generation on message m
» Choosesk € {1, ...,q — 1} uniformly at random

» Signer computes
r=(g" mod p) mod q
s=k™1(h(m) + ar) mod q

Signature verification
» Signature: sigy,(m) = (r,s)

» Upon receipt of m, 1, s the verifier

» Checksifre{l,..,gq—1}ands€e{1,..,q — 1}

» Computesu; = h(m)s 'mod q,u, = rs 'mod g
» Computesv=g"1 A*2 mod p mod q

» Accept signature if v = r, reject otherwise
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Correctness of Verification

e Upon receipt of m, r, s the verifier computes
v = g"1 A¥2 mod p mod q

= ghms™ 4rs™ mod p mod q

— 'gh(m)s_1 +ars_1m0d p mod q

— gs_1 (h(m)+ar) i 0d p mod q

S—l

= g5 *modp mod g

s™ skmod p mod g

g

=T

g was selected such that g7 = 1 mod p, thus
gfmodp = gk™44modp
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Reusing k leads to a total break of DSA

Assume k is used to sign two known messages m, and once for m,, then

r = (g*¥mod p) mod q (same for both messages)
S, = (k‘l( h(my) + ar)) mod q
s, = (k"Y(h(m,) + ar)) mod q
Thus, s; — s, _ k™1(h(m,) — h(m,)) mod q
and therefore: k = (s; — s2) " 1(h(m,) - h(m;) ) mod q
And thus, a = r~1( s,k - h(m,))mod q

l.e., private key a can be computed by anyone observing the messages

and signatures if the same k is used twice

IT-Security - Chapter 4 Asymmetric Cryptography
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MACs versus Digital Signatures

e MACs can provide e Signature Schemes can provide
» Message integrity » Message integrity
» Origin authentication » Origin authentication

» Broadcast authentication
» Non-repudiation

e Require verifier to share a secret key with e Require verifier to obtain an authentic

MAC producer copy of public key of signer
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e Basic Number Theory e Digital signature schemes

» Finite Fields, greatest common divisor, » Intuition
Fermat’s theorem » RSA as signature scheme
» Factorization » Digital signature standard

» Discrete Logarithms

e Public Key Encryption Schemes e Diffie-Helman Key Agreement
» Intuition » Basicidea

» RSA as encryption scheme » Man-in-the-middle attack

e Quantum Computers
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Diffie-Hellman (DH) Key Agreement

e Oldest public key mechanism
» Invented in 1976

e Is a key establishment protocol by which two parties can
» Establish a symmetric secret key K
» Based on publicly exchanged values

e Security based on hardness of discrete logarithm problem

» Any polynomial-time algorithm that solves the DL problem also solves the

computational DH-problem:
= Given a prime number p, a generator g of Z,, g%, g? find K = g

» It is unknown if the computational DH-problem can be solved without

solving the DL problem

IT-Security - Chapter 4 Asymmetric Cryptography
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Diffie-Hellman Key Agreement

Public parameters

» Prime number p, generator g of Z,,

Private values

» Private DH-value of Alice

=a € {2,..,p — 2} chosen uniformly at random

» Private DH-value of Bob

= b € {2,...,p — 2} chosen uniformly at random
Public values

» Public DH-value of Alice A = g* mod p

» Public DH-value of Bob B = g” mod p
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Choose a Choose b
Compute A = g*modp Compute B = g” modp

>
>

[ Compute K= A” mod p ]

&
<

[ Compute K= B* mod p ]
I

As AP modp = g% = gP% = B*modp

Alice and Bob now share the secret key K = g“b




Man-in-the-Middle Attack

Result
» A shares K4 with attacker
= but thinks she shares it with B
» B shares K, with attacker
= but thinks he shares it with A
» A and B do not share key

= but they think they do

= Attacker can eavesdrop!

All computations are done mod p and a, b, ¢, d are chosen from {2, ...,p — 2}

Choose a
Compute A = g¢

A
Choose ¢ ]
A thinks this _ Compute C = g c
comes from B >
Choose d
D | Compute D = g% |
B

[ Compute K; = D¢ ]

B thinks this
comes from A

Choose b
Compute B = g?

[

Compute K; = A%
Compute K, = B¢

[Compute K, = CP ]
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Symmetric vs. Asymmetric Cryptography

Symmetric Cryptography Asymmetric Cryptography
» More efficient » Less efficient
= Often used to encrypt large amounts of data = Rarely used to encrypt longer messages
» Higher number of secret keys required » Lower number of private keys required
= n(n — 1)/2 keys required to enable pairwise = n keys required in order to enable pairwise
confidential communication between n parties confidential communication between n parties
» Secret keys need to be distributed » Only public keys need to be distributed
= Need to ensure confidentiality and = Need to ensure authenticity of public keys but
authenticity not confidentiality

In practice, the best of both worlds is often combined: asymmetric cryptography is used to
establish secret keys which are then used for symmetric encryption and integrity protection
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e Basic Number Theory e Digital signature schemes

» Finite Fields, greatest common divisor, » Intuition
Fermat’s theorem » RSA as signature scheme
» Factorization » Digital signature standard

» Discrete Logarithms

e Public Key Encryption Schemes e Diffie-Helman Key Agreement
» Intuition » Basicidea
» RSA as encryption scheme » Man-in-the-middle attack

e Quantum Computers
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Quantum Computers and Traditional Asymmetric Schemes

e 1994 Peter Shor developed two polynomial time quantum algorithms
» A factorization algorithm that can factorize large compound numbers

» A discrete logarithm algorithm that can compute the discrete logarithm x of g* mod p for a given prime

number p and generator g

e All classical asymmetric schemes can be broken with a large enough quantum computer, e.g.
» RSA signature scheme and RSA encryption scheme
» DSA
» Diffie-Helman Key Agreement
» Elliptic Curve Cryptosystems lice ECDSA, ECDH
e Lead to NIST calls for quantum secure encryption, signature, and key agreement schemes

» New post quantum algorithms selected in 2022
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Quantum Computers and Traditional Symmetric Schemes

o Grover’s algorithm (1996) enables breaking symmetric encryption schemes like AES in 0 (2"/?)
where n is the bit length of the key

» Thus, it is currently believed that doubling the key size for symmetric encryption suffices

e No known algorithm to find collisions for hash functions faster than on classical computers yet

» Cryptographic hash functions are currently believed not to be affected by quantum computers
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Summary

e Asymmetric encryption schemes: confidentiality

» Most prominent example: RSA

= Security depends on hardness of factorization

e Digital signature schemes: integrity protection

» Most prominent examples: RSA, DSS
= Security of DSS depends hardness of computing discrete logarithms

» All signature schemes require hashing before signing

» Provide non-repudiation and broadcast integrity protection

= which cannot be provided by symmetric integrity protection via MACs
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Summary

e Diffie-Helman Key Agreement: establish secret key
» Can be used to establish a shared secret key for a symmetric scheme

» Isitself an asymmetric scheme

» Security depends on hardness of discrete logarithm

» Isin its basic version vulnerable to a man-in-the-middle attack

e All asymmetric schemes require authentic public keys

» Need to be able to obtain authentic copy of the public keys of other entities

e All classical asymmetric schemes can be broken by large enough quantum computers
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