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Chapter 4: Asymmetric Cryptography

Public key encryption, Digital Signatures, Diffie-Hellman Key Agreement



● In the security mechanisms we covered so far

► Alice and Bob needed to share the same secret key

● In this chapter we learn how asymmetric cryptosystems work

► Alice can share a single public key with multiple other parties and keeps a private key to herself

► In an asymmetric encryption scheme, 

§ anyone in possession of Alice’s public key can encrypt messages for Alice

§ but only Alice can (with the private key) decrypt messages

► In a digital signature scheme 

§ only Alice can sign a messages

§ anyone in possession of the public key can verify a signature on a message

Overall Lecture Context
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Overview
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● Public Key Encryption Schemes

► Intuition

► RSA as encryption scheme

● Diffie-Helman Key Agreement

► Basic idea

► Man-in-the-middle attack 

● Digital Signatures

► Intuition on integrity protection with digital 

signatures

► RSA as signature scheme

► Digital signature standard

● Basic Number Theory

► Finite Fields, greatest common divisor, 

Fermat’s theorem

► Factorization

► Discrete Logarithms

● Quantum Computers



Addition: ℤ! × ℤ!➝ ℤ! , $𝑎 + '𝑏 ∶= 𝑎 + 𝑏

Then, for all $𝑎, '𝑏 ∈ ℤ! it holds that 

'𝑎 + '𝑏 = $𝑏 + '𝑎

($𝑎 + '𝑏 ) + ̅𝑐 = '𝑎 + ('𝑏 + ̅𝑐 )

'0 +'𝑎 = '𝑎

'𝑎 + 𝑛 − 𝑎 = '𝑛 = '0

Modular Arithmetic and Residue Class Rings
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Multiplication: ℤ!	× ℤ!	➝ ℤ!	, '𝑎 • '𝑏 ∶= 𝑎𝑏

Then, for all $𝑎, '𝑏 ∈ ℤ!	it holds that 

'𝑎 • '𝑏 = '𝑏 • '𝑎

($𝑎 • '𝑏 ) • ̅𝑐 = '𝑎 • ('𝑏 • ̅𝑐 )

'1 • '𝑎 = '𝑎

'𝑎 is called invertible mod𝑛 if there is an �̅�

∈ ℤ!	such that '𝑎 • �̅� = '1

Let ℤ𝒏	 = {$𝟎, $𝟏, $𝟐, …, 𝒏 − 𝟏} with '𝑘 = 𝑥 ∈ ℤ 𝑥 mod𝑛 = 𝑘}

Thus, (ℤ𝒏	, +, •) forms a commutative ring with 1

For ease of reading, we 
will denote !𝑘 as 𝑘 mod 𝑛
in the rest of this lecture



Example: Addition and Multiplication in ℤ𝟔
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+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

• 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

● Invertible in ℤ𝟔:

► 1, 5

● Not invertible in ℤ𝟔:

► 0, 2, 3, 4 

● Not all elements of ℤ𝟔 \ {0}

are invertible

⇒(ℤ𝟔 , +, •) is a ring but not 

a  finite field



Example: Addition and Multiplication in ℤ𝟓
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+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

• 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

● Invertible in ℤ𝟓:

► 1, 2, 3, 4

● Not invertible in ℤ𝟓:

► 0

● All elements of ℤ𝟓 \{0} are 

invertible

⇒(ℤ𝟓 , +, •) is a finite field



Let 𝐠𝐜𝐝(𝒏, 𝒌) denote the greatest common divisor of 𝒏 and 𝒌

Then there are integers 𝒙, 𝒚 such that 𝒙𝒏 + 𝒚𝒌 = 𝐠𝐜𝐝(𝒏, 𝒌)

Extended Euclidian Algorithm
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Euclidian algorithm computes gcd(𝑛, 𝑘)

Input: integers 𝑘, 𝑛 with 𝒏 > 𝒌 > 1

Set 𝑟0 = 𝑛 , 𝑟1 = 𝑘

WHILE 𝑟!"# > 0

Compute 𝑞!"$, 𝑟!"# with 𝑟𝑖 = 𝑞!"$ 2 𝑟!"$ + 𝑟!"#

END(WHILE)

RETURN gcd(𝑛, 𝑘) = 𝒓𝒊"𝟏

Extended Euclidian algorithm 

Additionally computes 𝑥, 𝑦

Set 𝑢0 = 𝑣1 = 1, 𝑢1 = 𝑣0 = 0

WHILE 𝑟!"# > 0

Compute 𝑢!"#= 𝑢! – 𝑞!"$ 2 𝑢!"$

Compute 𝑣!"#= 𝑣!– 𝑞!"$ 2 𝑣!"$

END(WHILE)

RETURN 𝒙 = 𝒖𝒊"𝟏 and y = 𝒗𝒊"𝟏



Example
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Euclidian algorithm to compute gcd(595, 408)

Set 𝑟0 = 595 , 𝑟1 = 408

𝑟0 = q1 2 𝑟1 + 𝑟2

595 = 1 2 408 + 187

𝑟1 = q2 2 𝑟2 + 𝑟3

408 = 2 ⋅ 187 + 34

𝑟2 = q3 2 𝑟3 + 𝑟4

187 = 5 ⋅ 34 + 𝟏𝟕

𝑟2 = q3 2 𝑟3 + 𝑟5
34 = 2 2 17 + 𝟎

⇒ 𝐠𝐜𝐝(𝟒𝟎𝟖, 𝟓𝟗𝟓) = 17

Extended Euclidian algorithm additionally computes 𝑥, 𝑦

Set 𝑢0 = 𝑣1 = 1, 𝑢1 = 𝑣0 = 0

𝑢2 = 𝑢0 − 𝑞1 𝑢1 𝑣2 = 𝑣0 − 𝑞1 𝑣1

𝑢2 = 1 – 1 2 0 = 1 𝑣2 = 0 − 1 2 1 = −1

𝑢3 = 𝑢1 − 𝑞2 𝑢2 v3 = 𝑣1 − 𝑞2 𝑣2

𝑢3 = 0 – 2 2 1 = −2 𝑣3 = 1 − 2 2 (−1) = 3

𝑢4 = 𝑢2 − 𝑞3 𝑢3 v4 = 𝑣2 − 𝑞3 𝑣3

𝑢4 = 1 – 5 2 (−2) = 11 𝑣4 = −1 − 5 2 3 = −16

⇒			𝟏𝟏 2 𝟓𝟗𝟓 + (−𝟏𝟔) 2 𝟒𝟎𝟖 = 𝟏𝟕



Observation: gcd(𝑛, 𝑘) = gcd(𝑛 − 𝑘, 𝑘)

Proof:

► If 𝑑 divides 𝑛 and 𝑘 , then there are 𝑟, 𝑠 with 𝑛 = 𝑟𝑑 and 𝑘 = 𝑠𝑑

► Thus 𝑛 − 𝑘 = (𝑟 − 𝑠)𝑑, so that 𝑑 also divides 𝑛 − 𝑘

► Thus, any divisor of 𝑛 and 𝑘 also divides 𝑛 − 𝑘

► Vice verse if 𝑑|𝑘 and 𝑑| 𝑛 − 𝑘, then there are 𝑤, 𝑡 with 𝑛 − 𝑘 = 𝑤𝑑 and 𝑘 = 𝑡𝑑

► Thus 𝑛 = 𝑛 − 𝑘 + 𝑘 = (𝑤 + 𝑡)𝑑 and any divisor of 𝑛 − 𝑘 and 𝑘 also divides 𝑛

Consequence:  gcd 𝑛, 𝑘 = gcd 𝑛 mod 𝑘 , 𝑘 ⇒ gcd 𝑛, 𝑘 = gcd 𝑟2, 𝑘 = gcd 𝑟2, 𝑟𝟑 …

Applying this repeatedly until the remainder 𝑟&'( = 0 gives us 𝑟&') = gcd 𝑟&*), 𝑟& = gcd 𝑛, 𝑘

Correctness of the Euclidian Algorithm
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Existence of Multiplicative Inverses
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𝒂 ∈ ℤ! is invertible mod𝑛 ⇔ 𝒂 and 𝑛 are relatively prim ⇔ 𝐠𝐜𝐝 𝒏, 𝒂 = 1

Proof of “⇒” : Assume a is invertible

⇒ there is an integer 𝑥 such that 𝑥𝑎 = 1mod𝑛

⇒ there is an integer 𝑘 such that 𝑥𝑎 = 1 + 𝑘𝑛

⇒ there is an integer k such that 𝑥𝑎 + – 𝑘 𝑛 = 1

Now if there was an integer 𝑑 s.t. 𝑑|𝑎 and 𝑑|𝑘

⇒ 𝑑| 𝑥𝑎 + – 𝑘 𝑛 and thus:  𝑑| 1 

⇒ 𝑑 = 1 and thus 𝑎 and 𝑛 are relatively prime

Proof of “⇐”: Assume 𝑎 and 𝑛 are relatively prime.

Then gcd(𝑎, 𝑛) = 1

⇒ there are integers 𝑥, 𝑦 such that 𝑥𝑎 + 𝑦𝑛 = 1

⇒ 𝑥𝑎 = 1 − 𝑦𝑛 = 1 mod 𝑛

⇒ 𝑥 is the inverse of 𝑎 mod 𝑛

ℤ!∗ ≔ Set of invertible elements in ℤ!	

For 𝑝 prime, ℤ,∗ = ℤ, \ {0} and (ℤ, , + , •) is a field 



● The number ℤ!∗ of invertible elements of ℤ! is called 𝜑 𝒏

● For a prime number 𝑝 it holds that 𝜑(𝒑) = 𝒑 − 1

► All elements of ℤ) \ {0} are invertible mod 𝒑

⇒ 𝜑(𝒑) = 𝒑 − 1

● If 𝑛 = 𝑝𝑞where 𝑝 and 𝑞 are two different prime numbers, then

𝜑 𝒏 = (𝒑 − 1)(𝒒 − 1)

► Not invertible: 𝑝, 2𝑝, 3𝑝, … , (𝑞 − 1)𝑝, 𝑞𝑝 → 𝑞 elements

► Not invertible: q, 2𝑞, … , (𝑝 − 1)𝑞 → another 𝑝 − 1 elements

► The other 𝑛 – 𝑞 − (𝑝 − 1) = 𝑛 – 𝑞 − 𝑝 + 1 elements are invertible

⇒𝜑 𝒏 = (𝒑 − 1)(𝒒 − 1)

Euler’s 𝞅 function
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Examples:

ℤ5
* = {1, 2, 3, 4}, 

ℤ4
* = {1, 3}, 

ℤ10
* = {1, 3, 7, 9}



Euler’s theorem:

For any 𝑎 ∈ ℤn
*: 𝑎-(!) = 1 mod 𝑛

Euler’s Theorem
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Proof:

► If 𝑎, 𝑏 ∈ ℤn
∗, then 𝑎 2 𝑏 ∈ ℤn

∗

► Multiplying all elements of ℤn
∗ with some 𝑎 ∈ ℤn

∗ just 

reorders them:

§ Assume 𝒙 is the product of all different 𝒙1, … , 𝒙𝜑 𝑛 ∈ ℤn
∗

§ Then, for any 𝑎 ∈ ℤn
*: 𝑎𝑥1𝑎𝑥2…𝑎𝑥*(,) = 𝑎*(,)𝑥 = 𝑥

– otherwise 𝑎𝑥𝑖 = 𝑎𝑥𝑗 for some 𝑖 ≠ j

§ Multiplying the above equation with 𝑥*+ on both sides yields 

𝑎,(.) = 1mod 𝑛

Consequence:

For any 𝑎 ∈ ℤn
*and any integer 𝑠 it holds that 

𝑎- ! 0') = 𝑎 mod 𝑛



Generalization:

Let 𝑛 = 𝑝𝑞 where 𝑝 and 𝑞 are two different  prime numbers then 

for all 𝑎 ∈ ℤ! it holds that 𝑎- ! ') = 𝑎 mod 𝑛

Generalization of Euler’s Theorem
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► Consequently, 𝑟𝑝 = 𝑠𝑞 such that 𝑞 | 𝑟

► So, there is an integer 𝑙 with 𝑟 = 𝑙𝑞

► Thus, 𝑎, . 0+ = 𝑎 + 𝑟𝑝 = 𝑎 + 𝑙𝑞𝑝 = a + 𝑙𝑛

⇒ 𝑎* , "$ = 𝑎 mod 𝑛

Proof: For 𝑎 = 0 the equation obviously holds 

For all invertible 𝑎 ∈ ℤ,	we already proofed it on the last slide

So, lets assume an 𝑎 ∈ ℤ,	that is not invertible

► Then it is either divisible by 𝑝 or by 𝑞 (or both but then 𝑎 = 0 ).

► Let’s assume 𝑎 is not divisible by 𝑝 but divisible by 𝑞.

► Then, 𝑎1*+ = 1mod 𝑝 and 𝑎2*+ = 0mod 𝑞

► Thus, 𝑎, . 0+ = (𝑎1*+)2*+𝑎 = 𝑎 mod 𝑝 and 𝑎, . 0+ = (𝑎2*+)1*+𝑎 = 𝑎 mod 𝑞

► Thus, there are integers 𝑟 and 𝑠 with 𝑎, . 0+ = 𝑎 + 𝑟𝑝 and 𝑎, . 0+ = 𝑎 + 𝑠𝑞



Hardness of Factorization

► No known polynomial time algorithms for 

factorization on classical computers

► Best current algorithms for classical 

computers have sub-exponential run-time

§ Pollard’s Rho Method

§ Quadratic Sieve

§ Number Sieve

§ …

The Factorization Problem
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Definition

Given a composite integer 𝑛, find a non-

trivial factor of 𝑛



● The security of many asymmetric cryptosystems is based on the hardness of the discrete 

logarithm problem or the decisional Diffie-Hellman problem

● Relation between the two problems

► If in a group the discrete logarithm problem can be solved, the DDH problem can also be solved

The Discrete Logarithm Problem
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Definition DL Problem

Given a cyclic group 𝐺, a generator 𝑔 ∈

𝐺, and 𝑔𝑥 but not 𝑥, find the discrete 

logarithm 𝑥.

Definition Decisional Diffie-Hellman Problem

Given Given a cyclic group 𝐺, a generator 𝑔 ∈ 𝐺, 

and 𝑔𝑥 , 𝑔𝑦 , 𝑔1 but not 𝑥, y, z, decide if 𝑔𝑥 y = 𝑔𝑧
⇒



Overview
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● Public Key Encryption Schemes

► Intuition

► RSA as encryption scheme

● Diffie-Helman Key Agreement

► Basic idea

► Man-in-the-middle attack 

● Digital signature schemes

► Intuition

► RSA as signature scheme

► Digital signature standard

● Basic Number Theory

► Finite Fields, greatest common divisor, 

Fermat’s theorem

► Factorization

► Discrete Logarithms

● Quantum Computers



Note: The definition of an encryption scheme presented in Chapter 2 also holds for asymmetric encryption! 

Intuition Public Key Encryption
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Encryption 
algorithm

Ciphertext

Plaintext

Decryption 
algorithm

Ciphertext

Insecure channel

Bob’s Public Key

Plaintext

Bob’s Private Key

● Alice wants to send a confidential 

plaintext to Bob

● Alice has an authentic copy of Bob’s 

public key

● Alice uses Bob’s public key to 

encrypt plaintext to ciphertext 

● Bob uses his private key to decrypt

ciphertext to plaintext

● Decryption is ”difficult” without the 

private key



● First asymmetric encryption scheme invented in 1977

► By Ron Rivest, Adi Shamir, and Leonard Adleman at MIT

► Original idea of asymmetric encryption goes back to Diffie and 

Hellman, though

● Patented from 1983 to 2000

● Supports different key lengths and variable block sizes

► Currently, 2048 bit keys are considered sufficient

► Implies a block length of 2048 bit

● Requires plaintext blocks to be represented as integers

► Requires a coding scheme that converts bit strings in integers

RSA 
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Public Key

► Randomly select two different large prime 

numbers 𝑝, 𝑞

► Set 𝑛 ∶= 𝑝𝑞

► Chose 𝑒 ∈ ℤ, such that 𝑒 is invertible mod 𝜑 𝑛

► Set public key to (𝑛, 𝑒)

Private Key

► Compute 𝑑 ∈ ℤ, such that 𝑒𝑑 = 1mod 𝜑 𝑛

§ ∃ integer 𝑘 such that 𝑒𝑑 = 1 + 𝑘 𝜑 𝑛

► Set private key to 𝑑

RSA Key Generation
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Side Notes

► Large prime numbers can be found by

§ Choosing random numbers of appropriate size

§ Testing for primality with probabilistic primality 

tests

► If the desired bit length of the modulus is 𝑘 than 

𝑝 and 𝑞 should be 𝑘/2-bit prime numbers

► Choose 𝑒 ∈ ℤ,	randomly; check if gcd(𝑒, 𝑛) = 1

► Compute 𝑑 from 𝑒 with the Extended Euclidian 

Algorithm



RSA Operation
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Encryption

For a public RSA key  𝑝𝑘 = (𝑒, 𝑛),

𝐸𝑝𝑘 ∶ ℤ𝑛 → ℤ𝑛

𝐸𝑝𝑘 (𝑚) = 𝑐 = 𝑚3 𝑚𝑜𝑑 𝑛

Decryption

For the corresponding private RSA key  𝑠𝑘 = 𝑑

𝐷𝑠𝑘 ∶ ℤ𝑛 → ℤ𝑛
𝐷𝑠𝑘 𝑐 = 𝑐4 = 𝑚 𝑚𝑜𝑑 𝑛

Small Example:

Key generation:

Let 𝑝 = 3, 𝑞 = 5, then 𝑛 = 𝑝𝑞 = 15

𝜑(𝑛) = 2 2 4 = 8

Chose 𝑒 = 3 , then 𝑒 is invertible mod 𝜑(𝑛) as 8 and 3

are relatively prime

Setting 𝑑 = 3 we get 𝑒𝑑 = 9 = 1 mod 8

Encryption of 𝒎 = 𝟕:

𝑚𝑒 mod 𝑛 = 73mod 15 = 343 mod 15 = 13

Decryption of 𝒄 = 𝟏𝟑:

𝑐𝑑 mod 𝑛 = 132 mod 15 = 2197 mod 15 = 7

Correctness of RSA

For any ciphertext 𝑐 ∈ ℤ!	:     

𝑐3 =𝑚43mod 𝑛 = 𝑚- ! 5') mod 𝑛 = 𝑚 mod 𝑛



● RSA Encryption and Decryption: 𝒙𝑘 mod 𝒏

● “Naïve” modular exponentiation 

► Requires 𝑘 modular multiplications

► Problem: the size of the exponent is of the 

same order as the size of the modulus 𝒏

► Naïve modular exponentiation is not 

efficient

Efficient Modular Exponentiation
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● More efficient modular exponentiation 

● Idea: Use the binary representation of 𝑘

► 𝑘 = ∑ 𝑘!2! = 𝑘9 + 2(𝑘$ + 2(𝑘# + ⋯) ⋯) 

where𝑘! ∈ {0,1}

► Then we get 𝑥: = ∏𝑥:' #'

► So, all we need to do is square and multiply

Example

► 𝑘 = 37 = 1 + 2# + 2;

► So 𝑥<= = 𝑥 2 𝑥#( 2 𝑥#) = ((((𝑥#)#)#𝑥)#)#𝑥

► Two multiplications by 𝑥 and 5 squares



Theorem:

Let 𝑝, 𝑞 be prime numbers and 𝑛 = 𝑝 n 𝑞

Then 𝑛 can be efficiently factorized iff 𝜑 𝑛 can be computed efficiently 

RSA Security (1)
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Factorizing 𝑛 is equivalent to computing 𝜑 𝑛

Proof:

“⟹ ”: If 𝑛 can be efficiently factorized then 𝑝 and 𝑞 can

efficiently be computed from 𝑛 and therefore 

𝜑(𝑛) = (𝑝 − 1) n (𝑞 − 1) is efficiently computable

“⟸“: If 𝜑(𝑛) is known, then one can compute 𝑝 and q

from the two equations 𝑛 = 𝑝 n 𝑞 and 𝜑(𝑛) = (𝑝 − 1) n (𝑞 − 1)



Theorem:

Let 𝑝, 𝑞 be prime numbers and 𝑛 = 𝑝 n 𝑞 and (𝑒, 𝑛) a public RSA key and 𝑑 the 

corresponding private key. Then d can be efficiently computed from (𝑒, 𝑛) iff 𝑛 can 

be factorized efficiently. 

RSA Security (2)
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Computing 𝑑 is equivalent to factorizing 𝑛

Proof:
“⟹ ”: There is a probabilistic polynomial-time algorithm that 

computes 𝑝 and 𝑞 from 𝑑, 𝑒, and 𝑛

“⟸“: clear: if we can factorize 𝑛 we have 𝑝 and 𝑞 and can 

compute 𝜑(𝑛) and can thus compute 𝑑 as the inverse of e 

mod 𝜑(𝑛)



Summary:

► Compute a private RSA key 𝑑 from public key  (𝑒, 𝑛) is equivalent to factorizing 𝑛

► Factorizing 𝑛 is equivalent to computing 𝜑(𝑛)

RSA Security (3)

24IT-Security - Chapter 4 Asymmetric Cryptography

It is still unclear if there is a way to decrypt RSA-encrypted messages 
without knowledge of the private key d 

Recall Hardness of Factorization:

► For classical computers, there is currently no polynomial-time algorithm for factorization



Recall from Chapter 2: chosen plaintext attack against a cipher

► Attacker can obtain ciphertext for plaintexts of its choice

Chosen Plaintext Attack Against RSA
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Example: RSA can always be attacked in a chosen plaintext setting

► Any attacker with access to the public key (𝑒, 𝑛) can generate ciphertexts for plaintexts 

of its choice

§ Attacker choses 𝑚 and computes 𝑐 = 𝑚7 mod 𝑛

For deterministic asymmetric ciphers we always need to consider a chosen plaintext setting as realistic



Semantic Security
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Definition: Semantic Security

► Assume a challenger choses two plaintexts 𝑚$ and 𝑚#

► He encrypts the plaintexts with a public key 𝑝𝑘 𝑐$ = 𝐸): 𝑚$ and 𝑐# = 𝐸):(𝑚# )

► He then provides 𝑚$ , 𝑚# , 𝑐$, 𝑐# and 𝑝𝑘 to an adversary

► Then the public key encryption schemes is said to be semantically secure 

§ if  the adversary cannot guess with a probability larger than ½  which ciphertext encrypts which 

plaintext

Deterministic asymmetric ciphers like (textbook) RSA are not semantically secure



● The Optimal Asymmetric Encryption Padding OAEP 

► Converts message 𝑀 into encoded messages 𝐸𝑀

► Uses random seed to make RSA semantically secure

● Notations 

► 𝑀: bit-string message to encrypt

► ℎ: hash function

► 𝑠𝑒𝑒𝑑: random seed, same length as output of ℎ

► 𝐿: optional label, empty string by default

► MGF: mask generation function 

► Padding with zeros: 

§ let 𝑛 be a 𝑘 -byte modulus, then 𝑘 − |𝑀| − 2|ℎ(𝐿)| − 2

bytes of zero bytes are used as padding

Turning RSA into a Semantically Secure Cipher with OAEP
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ℎ(𝐿) 0 … . 0 0𝑥01 𝑀

𝑠𝑒𝑒𝑑

0𝑥00 𝑚𝑎𝑠𝑘𝑒𝑑𝑆𝑒𝑒𝑑 𝑚𝑎𝑠𝑘𝑒𝑑𝑀’

𝑴’ =

⊕

⊕

𝑬𝑴 =

MFG

MFG



● Idea

► Whenever RSA is used, 

§ keys must be generated

► Whoever implements these key generation 

§ can manipulate the code such that keys 

generated with it include a backdoor

► This backdoor allows him to 

§ retrieve the private key corresponding to a 

public key generated with his implementation

Backdoors in Key Generation
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● Underlining Model

► Manufacturer (Attacker)

§ Designer of the backdoor

§ Integrates the backdoor in the key generation code

► User (Victim)

§ In possession of a device or piece of code for key generation, e.g.

for RSA, manipulated by the manufacturer

§ Can observe public and private keys generated by his device

► External attacker

§ Can observe public keys used by the user



Naïve RSA Backdoor

► Key generation code with backdoor

§ Fix a prime number 𝒑

§ Choose a second prime number 𝒒 at random

§ Set 𝒏 = 𝒒𝒑

§ Select 𝒆 relatively prime to 𝝋(𝒏) and 𝒅 such that 

𝒆𝒅 = 𝟏𝐦𝐨𝐝𝝋(𝒏)

Backdoor for RSA Key Generation
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Unfortunately

► External attacker that observes two public keys 

(𝒆, 𝒏) and (𝒆′, 𝒏′) can compute 𝒑 = gcd(𝒏, 𝒏′)

§ Thus, any external attacker that suspects this 

backdoor can check for it

► User can check if the code/devices has this 

backdoor in the same way

Exploiting the backdoor

► If manufacturer sees that user uses (𝒆, 𝒏)

§ compute 𝒒 by 𝒏/𝒑, from 𝒒, 𝒑, 𝒆 compute 𝒅



Backdoor for RSA Key Generation
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Better RSA Backdoor

► Manufacturer’s RSA key pair (𝑬, 𝑵) and 𝑫

► Key generation code with backdoor

§ Pick random prime numbers 𝒑 and 𝒒 and set 𝒏

= 𝒑𝒒

§ Compute 𝒆 = 𝒑𝑬𝑚𝑜𝑑 𝑵

§ Check if 𝒆 is invertible mod𝜑(𝒏)

§ If yes, compute the inverse 𝒅 and output (𝒆, 𝒏), 𝒅

§ If no, pick a new prime number 𝒑 and start again

Exploiting the backdoor

► If manufacturer sees that client uses (𝒆, 𝒏)

► Compute 𝒆𝑫 𝑚𝑜𝑑 𝑵 = 𝒑 and can use this to 

compute 𝒒 and then 𝒅

External attacker and user

► Cannot check for this backdoor as they do not 

have the private key 𝑫

► To the user 𝒆 looks as if it was randomly picked

Backdoors like this exist for the key generation operations of many public key cryptosystems



Overview
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● Public Key Encryption Schemes

► Intuition

► RSA as encryption scheme

● Diffie-Helman Key Agreement

► Basic idea

► Man-in-the-middle attack 

● Digital signature schemes

► Intuition

► RSA as signature scheme

► Digital signature standard

● Basic Number Theory

► Finite Fields, greatest common divisor, 

Fermat’s theorem

► Factorization

► Discrete Logarithms

● Quantum Computers



● Alice uses her private key to generate a signature on the message 

● Anyone in possession of Alice’s public key can verify the signature

● Difficult to generate a message, signature pair that is accepted by the signature verification

► Without access to the private key

Intuition Digital Signatures
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Signature

Accept

Alices’s private key 

Reject

Alice’s public key

Signature 
Generation

Signature 
Verification



A digital signature scheme consists of

► A key generation algorithm that 

§ generates a public key 𝑝𝑘 for signature verification

§ generates a private key 𝑠𝑘 for signature generation

► A family of signature generation algorithms sig𝑠𝑘 that

§ takes a message 𝑀 as input and outputs the signature sig𝑠𝑘(𝑀)

► A family of signature verification algorithms ver𝑝𝑘 that 

§ takes a message 𝑀 and a signature sig𝑠𝑘(𝑀) as input and 

§ returns success or failure

Definition Digital Signature Scheme
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Key generation as in RSA Encryption

Public Key

► Randomly select two large prime numbers 𝑝, 𝑞

► Set 𝑛 ∶= 𝑝𝑞

► Chose 𝑒 ∈ ℤ, such that 𝑒 is invertible mod

𝜑 𝑛

► Set public key 𝑝𝑘 = (𝑛, 𝑒)

Private Key

► Compute private key 𝑠𝑘 = 𝑑 ∈ ℤ, such that 

𝑒𝑑 = 1mod 𝜑 𝑛

Naïve RSA Signatures (Insecure!)
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Signature generation

► signature 𝑠 on message 𝑚: 𝑠 = 𝑚4 mod 𝑛

Signature verification

► 𝑠3 = 𝑚43 ≟ 𝑚

Vulnerable to existential forgery

► Attacker can choose signature s and compute 

𝑚 = 𝑠3 and then claim that (𝑚, 𝑠) is a valid 

signature



Key generation as in Naïve RSA

Signature generation

► Let h be a publicly known cryptographic 

hash function 

► Signature 𝑠 on 𝑚 is 𝑠 = ℎ(𝑚)4

Signature verification 

► On receipt of ( �𝑚, ̅𝑠) verifier checks if 

ℎ( �𝑚) ≟ ̅𝑠3 𝑚𝑜𝑑 𝑛

RSA Signature Scheme
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Secure against existential forgery

► Attacker cannot find a message 𝑚 such that  

ℎ 𝑚 = 𝑠3 as ℎ is pre-image resistant

Hashing before signing is also required for security 
reasons in many other asymmetric signature schemes



Attacks on Digital Signatures

36IT-Security - Chapter 4 Asymmetric Cryptography

Power of attacker

► Key-Only Attack: Attacker only in possession of 

the public verification key

► Known-Message Attack: Attacker observes 

some message/signature pairs; tries to 

generate another valid  pair

► Chosen-Message Attack: Attacker can choose 

messages and can make the signer sign them; 

tries to generate another valid pair

Attack result

► Total break: (partial) recovery of the signature key

► Universal forgery: forge signatures on any 

message of the attacker's choice

► Selective forgery: forge a signature on a specific 

chosen message

► Existential forgery: merely results in some valid 

message/signature pair not already known to the 

adversary St
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● Adopted as standard by NIST in 1994

● Standardized in FIPS 186

● Security is based on the DDH assumption

► Related to but strong than the Discrete Logarithm problem

● Can be defined over different cyclic groups for which DDH 

assumption seems to hold, e.g. 

► Cyclic sub-groups of order 𝑞 of ℤ)∗ , where p and q are prime 

numbers where 𝑞 divides (𝑝 − 1)

● Variants for other cyclic groups exist

► E.g. ECDSA on specific elliptic curves over a finite field

Digital Signature Algorithm
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Public parameters

► Two prime number p, q with q|(p-1)

► x ∈ ℤ1∗ such that 𝑔:= 𝑥
!"#
$ mod p ≠ 1

§ The smallest interger 𝑖 or which 𝑔- = 1𝑚𝑜𝑑 𝑝 is 𝑖 = 𝑞

§ Thus, 𝑔 generates a sub group of order q in ℤ.∗

► Cryptographic hash function ℎ

Private key

► Chose 𝑎 ∈ {1,… , 𝑞 − 1} uniformly at random and set 𝑠𝑘 = 𝑎

Public key

► Set A = 𝑔9 mod 𝑝 as public key 𝑝𝑘

Key Generation for DSA 
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Example

Parameters

► 𝑝 = 11, 𝑞 = 5

► Select 𝑥 = 2, then 𝑔 = 4

Private key

► Chose a = 3

Public key

► Set A = 𝑔? mod 𝑝 = 4< mod 11 = 9



Signature generation on message 𝑚

► Chooses k ∈ {1, … , 𝑞 − 1} uniformly at random 

► Signer computes

r = (𝑔: mod 𝑝) mod 𝑞

s = 𝑘*+ ℎ 𝑚 + 𝑎𝑟 mod 𝑞

► Signature∶ sig𝑠𝑘 𝑚 = (𝑟, 𝑠)

DSA Operation

39IT-Security - Chapter 4 Asymmetric Cryptography

Signature verification

► Upon receipt of 𝑚, 𝑟, 𝑠 the verifier

► Checks if r ∈ {1, … , 𝑞 − 1} and s ∈ 1, … , 𝑞 − 1

► Computes 𝑢$ = ℎ 𝑚 𝑠@$mod 𝑞 , 𝑢# = 𝑟𝑠@$mod 𝑞

► Computes v = 𝑔A/ 𝐴A( mod 𝑝 mod 𝑞

► Accept signature if 𝑣 = 𝑟, reject otherwise



● Upon receipt of 𝑚, 𝑟, 𝑠 the verifier computes

v = 𝑔A/ 𝐴A( mod 𝑝 mod 𝑞

= 𝑔B C D0/ 𝐴ED0/ mod 𝑝 mod 𝑞

= 𝑔B C D0/ "?ED0/mod 𝑝 mod 𝑞

= 𝑔D0/ (B C "?E)mod 𝑝 mod 𝑞

= 𝑔D0/ D:mod 𝑝 mod 𝑞

= 𝑔D0/ D:mod 𝑝 mod 𝑞

= 𝑟

Correctness of Verification
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g	was	selected	such	that	𝒈𝒒 = 1 mod 𝒑,	 thus  
𝒈𝑘 mod 𝒑 = 𝒈𝒌 𝑚𝑜𝑑 𝒒mod 𝒑



Assume 𝒌 is used to sign two known messages 𝒎𝟏 and once for 𝒎𝟐, then

𝒓 = (𝒈𝒌𝑚𝑜𝑑 𝒑) 𝑚𝑜𝑑 𝒒 (same for both messages)

𝒔𝟏 = 𝒌@𝟏 ℎ 𝒎𝟏 + 𝒂𝒓 𝑚𝑜𝑑 𝒒

𝒔𝟐 = (𝒌@𝟏( ℎ( 𝒎𝟐 ) + 𝒂𝒓)) 𝑚𝑜𝑑 𝒒

Thus, 𝒔𝟏 − 𝒔𝟐 = 𝒌
@𝟏( ℎ(𝒎𝟏) − ℎ(𝒎𝟐) ) 𝑚𝑜𝑑 𝒒

and therefore: 𝒌 = (𝒔𝟏 − 𝒔𝟐)*𝟏( ℎ(𝒎𝟏) – ℎ(𝒎𝟐) ) 𝑚𝑜𝑑 𝒒

And thus, 𝒂 = 𝒓*𝟏 𝒔𝟏𝒌 – ℎ 𝒎𝟏 𝑚𝑜𝑑 𝒒

I.e., private key 𝒂 can be computed by anyone observing the messages 

and signatures if the same 𝑘 is used twice

Reusing 𝑘 leads to a total break of DSA
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● MACs can provide

► Message integrity

► Origin authentication 

● Require verifier to share a secret key with 

MAC producer

MACs versus Digital Signatures
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● Signature Schemes can provide

► Message integrity 

► Origin authentication

► Broadcast authentication

► Non-repudiation

● Require verifier to obtain an authentic 

copy of public key of signer



Overview
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● Public Key Encryption Schemes

► Intuition

► RSA as encryption scheme

● Diffie-Helman Key Agreement

► Basic idea

► Man-in-the-middle attack 

● Digital signature schemes

► Intuition

► RSA as signature scheme

► Digital signature standard

● Basic Number Theory

► Finite Fields, greatest common divisor, 

Fermat’s theorem

► Factorization

► Discrete Logarithms

● Quantum Computers



● Oldest public key mechanism

► Invented in 1976

● Is a key establishment protocol by which two parties can 

► Establish a symmetric secret key K 

► Based on publicly exchanged values

● Security based on hardness of discrete logarithm problem

► Any polynomial-time algorithm that solves the DL problem also solves the 

computational DH-problem: 

§ Given a prime number 𝑝, a generator 𝑔 of ℤ1∗ ,  𝑔9, 𝑔C find 𝐾 = 𝑔9C

► It is unknown if the computational DH-problem can be solved without 

solving the DL problem

Diffie-Hellman (DH) Key Agreement
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Public parameters

► Prime number 𝑝, generator 𝑔 of ℤ)∗

Private values

► Private DH-value of Alice 

§ 𝑎 ∈ {2,… , 𝑝 − 2} chosen uniformly at random

► Private DH-value of Bob

§ 𝑏 ∈ {2,… , 𝑝 − 2} chosen uniformly at random

Public values

► Public DH-value of Alice 𝐴 = 𝑔? mod 𝑝

► Public DH-value of Bob 𝐵 = 𝑔G mod 𝑝

Diffie-Hellman Key Agreement
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Choose 𝑎
Compute 𝐴 = 𝑔9 mod 𝑝

Choose 𝑏
Compute 𝐵 = 𝑔C mod 𝑝

𝐴

𝐵
Compute K= 𝐴C mod 𝑝

Compute K= 𝐵9 mod 𝑝

As 𝐴A mod 𝑝 = 𝑔BA = 𝑔AB = 𝐵B mod 𝑝

Alice and Bob now share the secret  key K = 𝒈𝒂𝒃



Result

► A shares 𝑲𝟏 with attacker

§ but thinks she shares it with B

► B shares 𝑲𝟐 with attacker

§ but thinks he shares it with A

► A and B do not share key

§ but they think they do

⇒ Attacker can eavesdrop!

Man-in-the-Middle Attack
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Choose 𝑎
Compute 𝐴 = 𝑔9

Choose 𝑐
Compute 𝐶 = 𝑔D

𝐴

𝐵

Compute𝑲𝟏 = 𝐴E
Compute𝑲𝟐 = 𝐵DCompute𝑲𝟏 = 𝐷9

𝐶

Choose 𝑏
Compute 𝐵 = 𝑔C

Choose 𝑑
Compute 𝐷 = 𝑔E𝐷

Compute𝑲𝟐 = 𝐶C

B thinks this 
comes from A

A thinks this 
comes from B

All computations are done mod 𝑝 and 𝑎, 𝑏, 𝑐, 𝑑 are chosen from {2,… , 𝑝 − 2}



Symmetric Cryptography

► More efficient 

§ Often used to encrypt large amounts of data

► Higher number of secret keys required

§ 𝑛(𝑛 − 1)/2 keys required to enable pairwise 

confidential communication between n parties

► Secret keys need to be distributed

§ Need to ensure confidentiality and 

authenticity

Symmetric vs. Asymmetric Cryptography
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Asymmetric Cryptography

► Less efficient

§ Rarely used to encrypt longer messages

► Lower number of private keys required

§ 𝑛 keys required in order to enable pairwise 

confidential communication between n parties

► Only public keys need to be distributed

§ Need to ensure authenticity of public keys but 

not confidentiality

In practice, the best of both worlds is often combined: asymmetric cryptography is used to 
establish secret keys which are then used for symmetric encryption and integrity protection  



Overview
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● Public Key Encryption Schemes

► Intuition

► RSA as encryption scheme

● Diffie-Helman Key Agreement

► Basic idea

► Man-in-the-middle attack 

● Digital signature schemes

► Intuition

► RSA as signature scheme

► Digital signature standard

● Basic Number Theory

► Finite Fields, greatest common divisor, 

Fermat’s theorem

► Factorization

► Discrete Logarithms

● Quantum Computers



● 1994 Peter Shor developed two polynomial time quantum algorithms

► A factorization algorithm that can factorize large  compound numbers

► A discrete logarithm algorithm that can compute the discrete logarithm  𝑥 of 𝑔𝑥 𝑚𝑜𝑑 𝑝 for a given prime 

number 𝑝 and generator 𝑔

● All classical asymmetric schemes can be broken with a large enough quantum computer, e.g.

► RSA signature scheme and RSA encryption scheme

► DSA

► Diffie-Helman Key Agreement

► Elliptic Curve Cryptosystems lice ECDSA, ECDH

● Lead to NIST calls for quantum secure encryption, signature, and key agreement schemes

► New post quantum algorithms selected in 2022 

Quantum Computers and Traditional Asymmetric Schemes
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● Grover’s algorithm (1996) enables breaking symmetric encryption schemes like AES in 𝑂(𝟐𝒏/𝟐)

where n is the bit length of the key

► Thus, it is currently believed that doubling the key size for symmetric encryption suffices 

● No known algorithm to find collisions for hash functions faster than on classical computers yet

► Cryptographic hash functions are currently believed not to be affected by quantum computers

Quantum Computers and Traditional Symmetric Schemes
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● Asymmetric encryption schemes: confidentiality

► Most prominent example: RSA

§ Security depends on hardness of factorization 

● Digital signature schemes: integrity protection

► Most prominent examples: RSA, DSS 

§ Security of DSS depends hardness of computing discrete logarithms

► All signature schemes require hashing before signing

► Provide non-repudiation and broadcast integrity protection 

§ which cannot be provided by symmetric integrity protection via MACs

Summary

51IT-Security - Chapter 4 Asymmetric Cryptography



● Diffie-Helman Key Agreement: establish secret key

► Can be used to establish a shared secret key for a symmetric scheme

► Is itself an asymmetric scheme

► Security depends on hardness of discrete logarithm

► Is in its basic version vulnerable to a man-in-the-middle attack 

● All asymmetric schemes require authentic public keys

► Need to be able to obtain authentic copy of the public keys of other entities 

● All classical asymmetric schemes can be broken by large enough quantum computers

Summary
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