
Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 3: Symmetric Integrity Protection

Overview

2IT-Security - Chapter 3 Symmetric Integrity Protection

● Definition and security of integrity protection

► Intuition

► More formal definition

● Message Authentication Codes

► Based on cryptographic hash functions

► Based on symmetric ciphers

● Combining Encryption and Integrity Protection

● Based on cryptographic hash functions

► Based on symmetric ciphers

What does
integrity

protection mean

How can we get
integrity

protection?

How can we
securely combine

encryption and
integrity Protection

How can
integrity

protection be
attacked

● Manipulation of messages sent over an insecure network cannot be prevented

► Anyone between the communicating entities can change the message

§ Flip bits, delete bits, replace messages with other ones

● Encryption schemes do typically NOT enable detection of such manipulations

► See the many examples in the exercises

● Data integrity protection mechanisms aim at detecting any message manipulation by unauthorized

entities

► Can be realized in form of Modification Detection Codes (MDCs)

► Can be realized in form of Message Authentication Codes (MACs)

Intuition for Data Integrity protection

3IT-Security - Chapter 3 Symmetric Integrity Protection

Idea of Modification Detection Codes

4IT-Security - Chapter 3 Symmetric Integrity Protection

Accept

Sent Message

MDC
Function

MDC of
sent message

Received Message

MDC
function

Authenticated channel Immune to Changes

Insecure channel

Same?
Y Accept

MDC of received
message

Reject

Problem with MDCs

► Require a second

channel immune

to change

► Bob needs to be

sure that the MDC

he receives really

comes from Alice

Idea of Message Authentication Codes

5IT-Security - Chapter 3 Symmetric Integrity Protection

● Alice and Bob share a secret key

● Alice computes MAC of message using key

● Alice sends message and MAC to Bob

● Attacker may change message and/or MAC

Message

MAC function

MAC

MAC function

Same? Y Accept
Key

Reject

● Bob computes MAC of received message using key

● Compares computed MAC to received MAC

● Decides that message was received as sent if both are the same

Key

● A hash function is a function ℎ with the properties

► compression: ℎ maps an input 𝑥 of arbitrary bit-

length to an output ℎ(𝑥) of fixed bit-length 𝑛

► ease of computation: given ℎ and 𝑥, ℎ(𝑥) is easy to

compute

§ there is a polynomial-time algorithm to compute h(x)

Hash Function

6IT-Security - Chapter 3 Symmetric Integrity Protection

● A collision of a hash function is a

► pair of inputs 𝑥1, 𝑥2, with ℎ(𝑥1) = ℎ(𝑥2)

bit strings of any length: {0,1}∗

𝑛-bit strings {0,1}"

𝑥4

𝑥2 𝑥3

𝑥1⦁ ⦁

⦁⦁

𝑦1⦁
𝑦2⦁𝑦3⦁

Any hash function 𝒉 has collisions!

● Basic pigeonhole principle

► If 𝑛 pigeonholes are occupied by 𝑛 + 1 pigeons

then at least one pigeonhole is occupied with more than one pigeons

● Generalization

► If 𝑛 pigeonholes are occupied by 𝑘 / 𝑛 + 1 pigeons

then at lease one pigeonhole is occupied with more than 𝑘 pigeons

Minimal Number of Collisions of a hash function

7IT-Security - Chapter 3 Symmetric Integrity Protection

● Consequence for the minimal number of collisions

► If a hash function maps 𝑘 / 𝑛 messages to 𝑛 hash values

then there is at least one hash value to which 𝑘 or more messages hash

§ E.g., if n = 16, and 𝑘 " 𝑛 = 64, then there are 4 or more messages that hash to the same value

● A hash function is preimage resistant

► if given a randomly chosen 𝑦 = ℎ(𝑥) but not 𝑥 it is

computationally infeasible to find any pre-image 𝑥’ with ℎ(𝑥’) = 𝑦

● A hash function is second preimage resistant

► if given x, ℎ(𝑥) it is computationally infeasible to find a second pre-

image 𝑥’ ≠ 𝑥 with ℎ(𝑥’) = ℎ(𝑥)

● A hash function is collision resistant

► if it is computationally infeasible to find a pair 𝑥, 𝑥’ with 𝑥’ ≠ 𝑥 and

ℎ(𝑥’) = ℎ(𝑥)

Cryptographic Hash Function

8IT-Security - Chapter 3 Symmetric Integrity Protection

A cryptographic hash function is a preimage resistant and collision resistant hash function

Computationally infeasible

here means theoretically

computable but impractical

(except with negligible

probability) as it takes too

many resources and too much

time to compute!

● Collision resistance ⇒ 2nd pre-image resistance

Relations between the Properties

9IT-Security - Chapter 3 Symmetric Integrity Protection

● 2nd pre-image resistance ⇏ collision resistance

● Collision resistance ⇏ pre-image resistance

● Pre-image resistance ⇏ collision resistance

● 2nd pre-image resistance ⇏ pre-image resistance

● Pre-image resistance ⇏ 2nd pre-image resistance

⇒ A cryptographic hash function is always

2nd pre-image resistant as it is collision resistant

Note that some of these implications do

hold for a narrower definition of a hash

function mapping long fixed length-

messages to much shorter hashes

● Collision resistance ⇒ 2nd pre-image resistance

Example Proof of the Relations

10IT-Security - Chapter 3 Symmetric Integrity Protection

Proof by contradiction

► Assume h is collision resistant but not 2nd pre-image

resistant, then given 𝑥, ℎ(𝑥) we can find an 𝑥’ such that

ℎ(𝑥’) = ℎ(𝑥).

► Thus, we have found the collision (𝑥, 𝑥’)

► This contradicts our assumption which thus cannot hold

Collision resistance ⇏ pre-image resistance

Example Proof of the Relations

11IT-Security - Chapter 3 Symmetric Integrity Protection

Constructive proof

► Assume 𝑔 is collision resistant 𝑛-bit hash function

► Define ℎ(𝑥) = 5
1 ∥ 𝑥 if the bitlength of 𝑥 is 𝑛
0 ∥ 𝑔 𝑥 otherwiese

► Then ℎ(𝑥) is a (𝑛 + 1)-bit hash function that is collision

resistant but not pre-image resistant

A similar proof can be used to proof

that 2nd -pre-image resistance does not

imply pre-image resistance

Note that 𝑎 ∥ 𝑏 stands for the

concatenation of two bit-strings 𝑎 and 𝑏

Related Terms and Synonyms

12IT-Security - Chapter 3 Symmetric Integrity Protection

● Cryptographic hash function = Secure hash function

► pre-image resistant + collision resistant

► thereby also second-preimage resistant

● One way hash function

► pre-image resistant

● Second preimage resistant = weak collision resistant

► as it is implied by collision resistant

● Collision resistant = strong collision resistant

● Output of hash function = hash value = message digest = hash

Ideal Hash Function through Random Oracle Model

13IT-Security - Chapter 3 Symmetric Integrity Protection

● An ideal 𝑛-bit hash function ℎ would operate as follows

► Upon receipt of a message 𝑚 it has not seen before

§ Pick an 𝑛-bit value uniformly at random from {0,1}# and return it as ℎ 𝑚

► Upon receipt of a message 𝑚 it has seen before

§ Return the same value ℎ 𝑚 ,	that was picked when the message was new

● This ideal hash function is as pre-image and collision resistant as possible

● We can thus use it to determine an upper bound on

► how pre-image resistant a real-world hash function can be

► how collision resistant a real-world hash function can be

Pre-image attack: Given a hash value y

● Randomly select 𝑥 and compute ℎ(𝑥)

● Compare ℎ(𝑥) to 𝑦

► Stop if ℎ(𝑥) = 𝑦

► Return to Step 1 otherwise

● Requires 0.69 · 𝟐𝒏 = 𝑂(𝟐𝒏) hash computations to

find a pre-image with probability ½

Complexity of Attacks against Ideal Hash Function

14IT-Security - Chapter 3 Symmetric Integrity Protection

Collision attack:

● Randomly select 𝑥 and compute ℎ(𝑥), store result

● Compare each newly computed hash with the

values already stored

► Stop if ℎ(𝑥) = ℎ(𝑥’) and output (𝑥, 𝑥’)

► Return to Step 1 otherwise

● Requires 𝟏. 𝟏𝟖 · 𝟐𝒏/𝟐 = 𝑂(𝟐𝒏/𝟐) hash computations

to find a collision with probability ½

● Both statements on the complexities can be proven by the solution to flavors of the so-called Birthday Problem

The 1st birthday problem

► Given 𝑁 different balls in a jar and one fixed ball :𝑥

► How many times do we need to pull from the jar independently and uniformly at

random with put back until with probability 𝑃 we pulled :𝑥 at least once?

Solution

► If we chose one ball 𝑥, then the probability that 𝑥 ≠ :𝑥 is 1 − $
%

► The probability that we are unsuccessful 𝑘-times in a row is (1 − $
%
)𝑘

► The probability 𝑃 that we picked :𝑥 at least once if we pick 𝑘-times is thus

𝑃 = 1− (1 − $
%
)𝑘~ 1− 𝑒&

!
" (using the approximation 1 − 𝑥 ~ 𝑒&' (𝑥 ≪ 1))

► Thus 𝑘 ~ ln[1/(1 − 𝑃)]𝑁 and in particular for 𝐏 = 𝟏
𝟐
𝐰𝐞 𝐠𝐞𝐭 𝐤 ~ 𝟎. 𝟔𝟗 " 𝐍

Example Proof of Complexity of Pre-image Attack

IT-Security - Chapter 3 Symmetric Integrity Protection

Given 253 students, the

probability that at least

one of them has February

2nd as its birthday is 1/2

1st birthday problem

Birthday Paradoxon

► Given 𝑁 different balls in a jar

► How many times do we need to pull independently and uniformly at random with

put back from the jar until with probability 𝑃 we drew the same ball :𝑥 twice?

Solution

► We need to draw 𝑘 ~ 2 ln[1/(1 − 𝑃)]𝑁 times and in particular for 𝐏 =

𝟏
𝟐
𝐰𝐞 𝐠𝐞𝐭 𝐤 ~ 𝟏. 𝟏𝟖 " 𝑵 = 1.18 " 𝑵

𝟏
𝟐

Similar but Omitted: Proof of Complexity of Collision Attack

16

IT-Security - Chapter 3 Symmetric Integrity Protection

Given 23 students, the

probability that at least

two of share the same

birthday is 1/2

Birthday paradox

● MD5 and SHA-1 are not considered collision resistant anymore and should no longer be used

● SHA-2 not broken yet, but break needs to be feared

Examples for Hash Functions and their Properties

17IT-Security - Chapter 3 Symmetric Integrity Protection

Algorithm Maximum Message Size in Bit Block Size in Bit Rounds Size of Hash Value Year

MD5 264 512 64 128 1991

SHA-1 264 512 80 160 1993

SHA-2-224 264 512 64 224 2002

SHA-2-256 264 512 64 256

SHA-2-384 2128 1024 80 384

SHA-2-512 2128 1024 80 512

SHA-3-256 unlimited 1088 24 256 2015

SHA-3-512 unlimited 576 24 512

MD5

● 1993: Collision found by Boer and Bosselaers

● 1996: Attack that found a collision in a modified version of

MD5

● 2004: Wang et al. found collisions in MD5 and others

● 2005: Further make collision finding feasible on a laptop (8

hours to find a collision)

● 2006: Black et al. implemented a toolkit for collisions in MD5

● 2007: Stevens et al. find collisions in less than 10 seconds on a

on a 2.6Ghz Pentium 4

● 2009: MD5 attacks successfully used to fake certificates

● March 2011 IETF recommendation: MD5 should not be used

any more where collision resistance is needed

Example Time-Lines of Breaks of MD5 and SHA-1

18IT-Security - Chapter 3 Symmetric Integrity Protection

SHA-1

● 2004: 2nd preimage attack on SHA-1 in 2106

● 2005: Attack found by Wang et al. that finds a collision with

269 hash operations

● 2013: Attack by Stevens et al. finds identical prefix collision in

261 and chosen prefix collision in 277.1

● 2015: Attack by Stevens et al. that finds a Free-Start Collision

on 76-step SHA-1 in 250 hash operations

● 2017: Collision on SHA-1 found

● 2016/2017 SHA1 was phased out starting from 2016/17 by all

major browsers

● SHA-1 is not used anymore in the context of certificates

Overview

19IT-Security - Chapter 3 Symmetric Integrity Protection

● Definition and security of integrity protection

► Intuition

► More formal definition

● Message Authentication Codes

► Based on cryptographic hash functions

► Based on symmetric ciphers

● Combining Encryption and Integrity Protection

● Based on cryptographic hash functions

► Based on symmetric ciphers

What does
integrity

protection mean

How can we get
integrity

protection?

How can we
securely combine

encryption and
integrity Protection

How can
integrity

protection be
attacked

Modification Detection Codes

20IT-Security - Chapter 3 Symmetric Integrity Protection

Accept

Sent Message

Cryptographic
hash function

MDC of
sent message

Received Message

Cryptographic
hash function

Authenticated channel Immune to Changes

Insecure channel

Same?
Y Accept

MDC of received
message

Reject

Modification Detection Codes

can be implemented by

cryptographic hash functions

Message Authentication Codes

21IT-Security - Chapter 3 Symmetric Integrity Protection

● MACs require a secret key as additional input

● MAC functions can be constructed from cryptographic hash functions or block ciphers

Message

MAC function

MAC

MAC function

Same? Y Accept
Key

Key

Reject

● A Message Authentication Code (MAC) is a family of functions MAC𝑲 parameterized by a secret key

𝑲 with the following properties

► Ease of computation – given K and 𝒙,MAC𝑲(𝒙) is easy to compute

► Compression –MAC𝑲 maps an input 𝒙 of arbitrary finite bit-length to an output MAC𝑲(𝒙) of fixed bit-length 𝒏

► Computation resistance – for every 𝑲 and any given number of pairs (𝑥* , MAC𝑲(𝑥*)) it is without knowledge of 𝑲

computationally infeasible to compute any pair (𝒙,MAC𝑲(𝒙))with 𝒙 different from all 𝒙𝒊
§ Note that such pairs(𝑥$, MAC𝑲(𝑥$)) can typically be obtained by an attacker by eavesdropping

● MACs can be constructed from cryptographic hash functions or block ciphers

Definition of a Message Authentication Code

22IT-Security - Chapter 3 Symmetric Integrity Protection

● Let h be a cryptographic hash function, then for a message 𝑀 and key 𝐾

HMAC𝐾(𝑀) = ℎ(𝐾 ⊕ opad ∥ ℎ 𝐾 ⊕ ipad ∥ 𝑀)

where opad and ipad are constant values.

► ipad = 0x36….0x36

► opad = 0x5C…0x5C

HMAC: Bellare, Canetti, and Krawczyk 1996

23IT-Security - Chapter 3 Symmetric Integrity Protection

● HMAC is computation resistant if h is cryptographic hash function

► HMAC construction does not introduce any new risk

► ipad and opad guarantee that different keys are used in the inner and outer hash computation

§ The two keys will differ in half of the bits because of the choice of ipad and opad

● Unfortunately, no! Simple constructions like that are typically insecure

● Many hash functions (e.g., MD2, SHA-1, SHA-2) operate on blocks of 𝑀

► 𝑀 = 𝑀0 ∥ 𝑀1 ∥ … . ∥ 𝑀"

► ℎ operates on the first block 𝑀0 which is then used as first state to operate on 𝑀1,…

► Thus, ℎ(𝑀) is the initial state of ℎ(𝑀 ∥ 𝑋)

§ I.e., from known hashes of shorter messages, we can construct hashes of longer messages

► I.e., knowing ℎ(𝐾 ∥ 𝑀) we can compute ℎ(𝐾 ∥ 𝑀 ∥ 𝑋) without knowing the key

Can’t we just use ℎ(𝐾 ∥ 𝑀) as MAC?

24IT-Security - Chapter 3 Symmetric Integrity Protection

● CMAC uses a block cipher 𝐸𝐾 of block length 𝑏 = 64 or 𝑏 = 128

● A message M is split into 𝑛 blocks of length 𝑏:

𝑀 = 𝑀1 ∥ 𝑀2 ∥ … . ∥ 𝑀(

● If the last block 𝑀𝑛 is not of length 𝑏 it is padded with 10…0 until it is 𝑏 bit long

● CMAC computation is equivalent to

► Applying CBC Mode of encryption to the message with an IV of all zeros

► Except that the last block is additionally masked with

§ A sub-key K1 if Mn is of bit length b and with

§ A sub-key K2 if Mn was padded to be of full bit length b

► The resulting last ciphertext block is the CMAC of the message

CMAC: Constructing a MAC from a Block Cipher

25IT-Security - Chapter 3 Symmetric Integrity Protection

If Mn has block length b

Illustration of the CMAC Computation

26IT-Security - Chapter 3 Symmetric Integrity Protection

M1

EK

M2

EK

Mn-1

EK

Mn

EK

… K1

M1

EK

M2

EK

Mn-1

EK

Mn10…0

EK

… K2

CMAC(M)

CMAC(M)

⨁ ⨁

⨁ ⨁ ⨁

⨁

If Mn is padded to b bits

K1 and K2 are derived from K

► L= EK(0b), where 0b is the

bitstrings of b zeros

► R128 = 012010000111

► R64 = 05911011

● Then K1 is computed by

► If MSB1(L) = 0, K1 = L<<1

► Else K1 = L ⊕ Rb

● K2 is computed by

► If MSB1(K1) = 0, K2 = K1<<1

► Else K2 = (K1<<1) ⊕ Rb

● Let’s assume we have a one block message 𝑀 = 011

► then CMAC𝐾(𝑀) = 𝐸-(01110… 0 ⊕ 𝐾2)

● The one block message 𝑀’ = 01110…0 has CMAC𝐾(𝑀′) = 𝐸)(01110…0 ⊕ 𝐾1)

● So, if 𝐾1 and 𝐾2 were the same,

► then CMAC𝐾(𝑀) would be the same as CMAC𝐾 𝑀.

► Thus, an attacker could replace 𝑀 with 𝑀’ without the receiver noticing it

Rational for the Two Different Keys

27IT-Security - Chapter 3 Symmetric Integrity Protection

● Using a “pure” CBC-MAC is insecure!

► I.e., without the masking by 𝐾1 or 𝐾2 in the last step

● A CBC-MAC allows for forgery in some specific settings

► For example, let 𝑀 and 𝑃 be two one-block messages and 𝑀𝐴𝐶𝐾 be a CBC-MAC

§ 𝑀𝐴𝐶𝐾(𝑀) = 𝐸-(𝑀)

§ 𝑀𝐴𝐶𝐾(𝑃) = 𝐸-(𝑃)

► If an attacker observes 𝑀,𝑀𝐴𝐶𝐾(𝑀) and 𝑃, 𝑀𝐴𝐶𝐾 𝑃

§ he can forge a valid CBC-MAC on 𝑀 ∥ (𝑃 ⨁𝑀𝐴𝐶𝐾 𝑀)without knowing 𝐾 because:

§ 𝑴𝑨𝑪𝑲(𝑴 ∥ (𝑷 ⨁𝑴𝑨𝑪𝑲(𝑴))) = 𝐸&(𝐸& 𝑀 ⊕𝑃⊕𝑀𝐴𝐶𝐾(𝑀)) = 𝐸&(𝑃 ⨁𝑀𝐴𝐶&(𝑀) ⨁𝑀𝐴𝐶&(𝑀)) = 𝐸&(𝑃) -= 𝑴𝑨𝑪𝑲(𝑷)

● The masking with 𝐾1 and 𝐾2 solves this problem

Why Do we need the Masking with 𝐾1 and 𝐾2

28IT-Security - Chapter 3 Symmetric Integrity Protection

Challenge-based

SQN-based

Timestamp-based

● A MAC computed over a message alone

► does not protect against replay of the protected message

● Replay protection requires additional input

► Make a message sent twice distinguishable from a replayed

message

● Additional input

► Counters

§ Time stamps

§ Sequence numbers (𝑆𝑄𝑁)

► Random numbers as challenges (𝑅𝐴𝑁𝐷)

Replay Protection

29IT-Security - Chapter 3 Symmetric Integrity Protection

𝑀𝐴𝐶𝐾(𝑀 ∥timestamp)

𝑀𝐴𝐶𝐾(𝑀 ∥ SQN)

𝑀𝐴𝐶𝐾(𝑀 ∥ 𝑅𝐴𝑁𝐷)

𝑅𝐴𝑁𝐷

Replay Protection

IT-Security - Chapter 3 Symmetric Integrity Protection

Advantage Disadvantage Main Use

Timestamps No explicit initial value
needs to be known by
sender and receiver

Require time synchronization
between sender and receiver

Whenever sender and
receiver are time-
synchronized anyway

SQNs Simple, no time-
synchronization required

Requires (re-)synchronization
of SQN, Agreement on initial
value, Window of acceptable
SQNs if in-order delivery of
messages cannot be
guaranteed

Protect all traffic between
two entities once keys are
established

RAND Does not need
synchronization, requires
random number
generator

Requires receiver to challenge
the sender and thus adds
communication overhead

Mainly used as part of
authentication and key
agreement protocols,
where single messages
need to be protected
against replay

30

Overview

31IT-Security - Chapter 3 Symmetric Integrity Protection

● Definition and security of integrity protection

► Intuition

► More formal definition

● Message Authentication Codes

► Based on cryptographic hash functions

► Based on symmetric ciphers

● Combining Encryption and Integrity Protection

● Based on cryptographic hash functions

► Based on symmetric ciphers

What does
integrity

protection mean

How can we get
integrity

protection?

How can we
securely combine

encryption and
integrity Protection

How can
integrity

protection be
attacked

Combining Integrity Protection and Encryption

32IT-Security - Chapter 3 Symmetric Integrity Protection

Encrypt, then MAC: 𝐸).(M)	∥	𝑀𝐴𝐶)/(𝐸).(M))	

● Encrypt plaintext with 𝐾1

● Compute MAC on encrypted plaintext with 𝐾2

Encrypt and MAC: 𝐸-'(M)	∥	𝑀𝐴𝐶)/(M)

● Encrypt plaintext with 𝐾1

● Compute MAC on plaintext with 𝐾2

● MAC may reveal information on M

● MAC can only be checked AFTER decryption

MAC, then Encrypt: 𝐸-'(M ∥	𝑀𝐴𝐶)/(M))	

● Encrypt plaintext with 𝐾1

● Compute MAC on encrypted plaintext with 𝐾2

● MAC can only be checked AFTER decryption

Special authenticated modes of encryption

● E.g., Galois Counter Mode (GCM)

● E.g., Counter mode with CBC MAC (CCM)

● Typically take an encrypt then MAC approach

● Mode of encryption that also provides integrity protection

► Authenticated Encryption with Associated Data (AEAD) Mode

§ Allows for additional data to be integrity protected but not encrypted

● Based on a block cipher with 128-bit blocklength

● GCM can be used as MAC alone

► called GMAC then

● Properties

► Can use IVs of arbitrary length

► Easy to implement very efficiently in hardware

► Very good software performance

Example: Galois Counter Mode of Encryption (GCM)

33IT-Security - Chapter 3 Symmetric Integrity Protection

Data blocks to protect

𝑨𝟏 ∥ … ∥ 𝑨𝒎 ∥ 𝑷𝟏 ∥ … ∥ 𝑷𝒏

𝑨𝒊 (𝑖 = 1, … ,𝑚) are to be

integrity protected only

𝑷𝒊 (𝑖 = 1, … , 𝑛) are to be integrity

protected and encrypted

Illustration of GCM Encryption and Integrity Protection Operation

34IT-Security - Chapter 3 Symmetric Integrity Protection

P1

EK

C1

⊕

Y1

P2

EK

C2

⊕

Y2

P3

EK

C3

⊕

Y3Y0

EK

● H

A1

⊕
● H ● H ● H

⊕ ⊕

len(A) ∥ len(C)

● H

⊕

⊕ Tag

Data blocks to protect

𝑨𝟏 ∥ 𝑷𝟏 ∥ 𝑷𝟐 ∥ 𝑷𝟑
𝑨𝟏 integrity protected

𝑷𝒊 (𝑖 = 1,… , 3) integrity

protected and encrypted

𝒀𝟎 Initial counter value

𝒀𝒊 = 𝒀𝒊2𝟏 + 𝟏

𝑯 = 𝑬𝑲(𝟎𝟏𝟐𝟖)

● = Multiplication in GF(2128)

Illustration of GCM Decryption and Integrity Verification Operation

35IT-Security - Chapter 3 Symmetric Integrity Protection

P1

EK

C1

⊕

Y1

P2

EK

C2

⊕

Y2

P3

EK

C3

⊕

Y3Y0

EK

● H

A1

⊕
● H ● H ● H

⊕ ⊕

len(A) ∥ len(C)

● H

⊕

⊕ Tag

GCM in Formulars

36IT-Security - Chapter 3 Symmetric Integrity Protection

Data to be protected

𝑴 = 𝑨𝟏 ∥ … ∥ 𝑨𝒎 ∥ 𝑷𝟏 ∥ … ∥ 𝑷𝒏

Initialization:

𝑌0 Initial counter value

𝑌𝑖 = 𝑌425 + 1

𝐻 = 𝐸-(0567) wheer 0567 = 0⋯0

● = Multiplication in GF(2128)

Encryption: 𝐶𝑖	 = 	𝐸𝐾(𝑌4) ⊕ 	𝑃𝑖 for 𝑖 = 1, … , 𝑛

Integrity Protection: 𝑇0 = 	0

 𝑇𝑖 = (𝑇789⊕𝐴𝑖) ● 𝐻 for 𝑖 = 1, … ,𝑚

 𝑇9:4 = (𝑇:;789⊕𝐶𝑖)● 𝐻 for 𝑖 = 1, … , 𝑛

𝑇:;(;9 = (𝑇:;(⊕ (𝑙𝑒𝑛(𝐴) ∥ 𝑙𝑒𝑛(𝐶))) ● 𝐻

𝐺𝑀𝐴𝐶𝐾(𝑀) = 𝑇:;(;9 ⊕ 𝐸𝐾(𝑌0)

Note: if 𝑃𝑛 is not of full block length, then 𝐶𝑛 is not of full block length
If 𝐴𝑚 or 𝐶𝑛 are not of full block length, they are padded with zeros in the 𝐺𝑀𝐴𝐶 computation

Z128

● GF(2128) is the finite field with 2128 elements

► It is unique up to isomorphism

● GCM uses the irreducible polynomial 𝑓(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥7 + 𝑥128

● Identify each 128-bit string 𝑎 = 𝑎0… 𝑎127 with the polynomial 𝑎(𝑥) = ∑7?@9AB 𝑎𝑖𝑥𝑖

● Multiplication of 𝑎 and 𝑏 in GF(2128) is then defined as

► bit string representation of 𝑎 𝑥 / 𝑏(𝑥) mod f:

(∑7?@9AB 𝑎𝑖𝑥𝑖) ·(∑7?@9AB 𝑏𝑖𝑥𝑖) mod 𝑓

Reminder: Multiplication in GF(2128)

37IT-Security - Chapter 3 Symmetric Integrity Protection

● Message Authentication Codes provide integrity protection

► MACs can be constructed from cryptographic hash functions: HMAC

► MACs can be constructed from block ciphers: CMAC

► Simple constructions like ℎ(𝑀 ∥ 𝐾) or CBC-MAC are insecure

● Cryptographic hash functions

► Are pre-image resistant and collision resistant

► Finding a pre-image with probability ½ requires at most 𝑂(𝟐𝒏) hash computations for an ideal hash function

► Finding a second pre-image with prob. ½ requires at most 𝑂(𝟐𝒏) hash computations

► Finding a collision with prob. ½ requires at most at most 𝑂(𝟐𝒏/6) hash computations

● Replay protection requires additional input to an integrity protection mechanism

► E.g., a counter, a time stamp, or a random number selected by the receiver

Summary

38IT-Security - Chapter 3 Symmetric Integrity Protection

● Securely combining encryption and integrity protection

► Requires an encrypt-then-MAC type of an approach

§ Special modes of encryption which also provide integrity protection use this as well

► Other approaches are insecure or unnecessarily expensive

● The GCM Mode of encryption is an example for an AEAD cipher

► Provides encryption and integrity protection

► Makes use of CTR mode for encryption

► Can additionally protect the integrity of data which is not encrypted

Summary

39IT-Security - Chapter 3 Symmetric Integrity Protection

● Johannes Buchmann, Einführung in die Kryptographie, Springer Verlag 2016

► Chapter 11 on Hash Functions and Message Authentication Codes

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

§ Chapters 12: Message Authentication Codes

● Specifications

► HMAC: NIST Specification FIPS 198-1

§ https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf

► CMAC:

► GCM and GMAC NIST Special Publication 800-38D

§ https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

References

40IT-Security - Chapter 3 Symmetric Integrity Protection

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf

