Prof. Dr. M. Grohe

E. Fluck, A. Riazsadri, J. Feith

Übungsblatt 9

Abgabetermin: Mittwoch, der 21. Dezember 2022 um 14:30

- $\bullet\,$ Die Abgabe dieses Blattes wird am Mittwoch, dem 14.12. um 16 Uhr freigeschaltet.
- Die Lösungen der Hausaufgaben werden online via Moodle abgegeben.
- Die Hausaufgaben müssen in Gruppen von je drei Studierenden aus dem gleichen Tutorium abgegeben werden.
- Einzelabgaben werden mit 0 (Null) Punkten bewertet. Bitte versucht immer zu dritt arbeiten und abzugeben, das heißt wenn ein Teammitglied aufhört, sucht euch bitte ein weiteres Teammitglied.
- Nummer des Tutoriums, Nummer des Übungsblattes und Namen und Matrikelnummern der Studierenden sind auf das erste Blatt jeder Abgabe aufzuschreiben
- Es wird nur eine PDF-Datei, maximale Größe 15 MB, akzeptiert. Als Dateiname bitte Blatt-XX_Tutorium-YY_Gruppe-ZZZ.pdf mit der Nummer des aktuellen Blattes, des Tutoriums und der Abgabegruppe im Dateinamen verwenden.
- \bullet Musterlösungen zu den Hausaufgaben werden nach der Globalübung am Mittwoch, dem 21.12. in Moodle hochgeladen.

Tutoriumsaufgabe 1

Eine aussagenlogische Formel φ ist in XOR-KNF, falls φ eine Konjunktion von Klauseln der Form

$$C_i = \lambda_{i,1} \oplus \ldots \oplus \lambda_{i,k}$$

ist, d.h. jede Klausel C_i besteht aus einem XOR (\oplus , exklusives oder) von Literalen. Wir definieren das Erfüllbarkeitsproblem für XOR-KNF-Formeln:

XOR-SAT

Eingabe: Eine aussagenlogische Formel φ in XOR-KNF.

Frage: Existiert eine erfüllende Belegung α für φ ?

Zeigen Sie, dass XOR-SAT in P liegt. Sie können ohne Beweis verwenden, dass der Gauß-Algorithmus zum Lösen linearer Gleichungssysteme über endlichen Körpern in Polynomialzeit läuft.

Prof. Dr. M. Grohe

E. Fluck, A. Riazsadri, J. Feith

Tutoriumsaufgabe 2

Wir betrachten das folgende Problem:

2SAT

Eingabe: Eine aussagenlogische Formel φ in 2-KNF.

Frage: Existiert eine erfüllende Belegung α für φ ?

Zeigen Sie, dass 2SAT in P liegt.

Hinweis: Nutzen sie aus, dass $(X \vee Y)$ äquivalent zu $(\overline{X} \to Y) \wedge (\overline{Y} \to X)$ ist und konstruieren Sie einen gerichteten Graphen, dessen Kanten die Implikationen wiederspiegeln.

Tutoriumsaufgabe 3

Wir betrachten die folgende Variante von SAT:

Not-All-Equal-SAT

Eingabe: Eine aussagenlogische Formel φ in KNF.

Frage: Existiert eine erfüllende Belegung α für φ so, dass α mindestens ein Literal jeder Klausel von φ *nicht* erfüllt?

- a) Zeigen Sie durch Angabe geeigneter Zertifikate und eines Verifizierers, dass Not-All-Equal-SAT $\in \mathsf{NP}$ gilt.
- b) Zeigen Sie, dass Not-All-Equal-SAT NP-schwer ist.

Prof. Dr. M. Grohe

E. Fluck, A. Riazsadri, J. Feith

Aufgabe 4 4 Punkte

Eine aussagenlogische Formel ist in disjunktiver Normalform (DNF), falls sie eine Disjunktion von Konjunktionen von Literalen ist.

Wir betrachten das Erfüllbarkeitsproblem für DNF-Formeln:

DNF-SAT

Eingabe: Eine aussagenlogische Formel φ in DNF.

Frage: Existiert eine erfüllende Belegung α für φ ?

Zeigen Sie, dass DNF-SAT in P liegt.

Aufgabe 5 5 Punkte

Wir betrachten die folgende Variante von SAT:

MAX-3-VORKOMMNISSE-SAT

Eingabe: Eine aussagenlogische Formel φ in KNF, wobei jede Variable von φ höchstens 3 mal vorkommt.

Frage: Existiert eine erfüllende Belegung α für φ ?

Zeigen Sie, dass Max-3-Vorkommnisse-SAT NP-schwer ist.

Aufgabe 6 6 Punkte

Wir betrachten das folgende Problem (siehe Übungsblatt 8):

 $\{-1,0,1\}$ -Restricted Integer Programming

Eingabe: Eine Matrix $A \in \{-1, 0, 1\}^{m \times n}$ und ein Vektor $b \in \{-1, 0, 1\}^m$.

Frage: Gibt es einen Vektor $x \in \{0,1\}^n$ mit $Ax \ge b$?

Zeigen Sie, dass $\{-1,0,1\}$ -RESTRICTED INTEGER PROGRAMMING NP-vollständig ist.